Shilo Rosenwasser
Weizmann Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shilo Rosenwasser.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Shilo Rosenwasser; Shiri Graff van Creveld; Daniella Schatz; Sergey Malitsky; Oren Tzfadia; Asaph Aharoni; Yishai Levin; Alexandra Gabashvili; Ester Feldmesser; Assaf Vardi
Significance Phytoplankton form massive blooms in the oceans that are controlled by nutrients, light availability, and biotic interactions with grazers and viruses. Although phytoplankton were traditionally considered passive drifters with currents here we demonstrate how diatom cells sense and respond to oxidative stress through a redox-sensitive protein network. We further demonstrate the redox sensitivity of nitrogen assimilation, which is essential for diatom blooms in the ocean, and provide compelling evidence for organelle-specific oxidation patterns under nitrogen stress conditions using a genetically encoded redox sensor. We propose that redox regulation of metabolic rates in the response to stress provides a mechanism of acclimation to rapid fluctuations in the chemophysical gradients in the marine environment. Diatoms are ubiquitous marine photosynthetic eukaryotes responsible for approximately 20% of global photosynthesis. Little is known about the redox-based mechanisms that mediate diatom sensing and acclimation to environmental stress. Here we used a quantitative mass spectrometry-based approach to elucidate the redox-sensitive signaling network (redoxome) mediating the response of diatoms to oxidative stress. We quantified the degree of oxidation of 3,845 cysteines in the Phaeodactylum tricornutum proteome and identified approximately 300 redox-sensitive proteins. Intriguingly, we found redox-sensitive thiols in numerous enzymes composing the nitrogen assimilation pathway and the recently discovered diatom urea cycle. In agreement with this finding, the flux from nitrate into glutamine and glutamate, measured by the incorporation of 15N, was strongly inhibited under oxidative stress conditions. Furthermore, by targeting the redox-sensitive GFP sensor to various subcellular localizations, we mapped organelle-specific oxidation patterns in response to variations in nitrogen quota and quality. We propose that redox regulation of nitrogen metabolism allows rapid metabolic plasticity to ensure cellular homeostasis, and thus is essential for the ecological success of diatoms in the marine ecosystem.
Plant Physiology | 2011
Shilo Rosenwasser; Ilona Rot; Evelyn Sollner; Andreas J. Meyer; Yoav Smith; Noam Leviatan; Robert Fluhr; Haya Friedman
Treatment of Arabidopsis (Arabidopsis thaliana) leaves by extended darkness generates a genetically activated senescence program that culminates in cell death. The transcriptome of leaves subjected to extended darkness was found to contain a variety of reactive oxygen species (ROS)-specific signatures. The levels of transcripts constituting the transcriptome footprints of chloroplasts and cytoplasm ROS stresses decreased in leaves, as early as the second day of darkness. In contrast, an increase was detected in transcripts associated with mitochondrial and peroxisomal ROS stresses. The sequential changes in the redox state of the organelles during darkness were examined by redox-sensitive green fluorescent protein probes (roGFP) that were targeted to specific organelles. In plastids, roGFP showed a decreased level of oxidation as early as the first day of darkness, followed by a gradual increase to starting levels. However, in mitochondria, the level of oxidation of roGFP rapidly increased as early as the first day of darkness, followed by an increase in the peroxisomal level of oxidation of roGFP on the second day. No changes in the probe oxidation were observed in the cytoplasm until the third day. The increase in mitochondrial roGFP degree of oxidation was abolished by sucrose treatment, implying that oxidation is caused by energy deprivation. The dynamic redox state visualized by roGFP probes and the analysis of microarray results are consistent with a scenario in which ROS stresses emanating from the mitochondria and peroxisomes occur early during darkness at a presymptomatic stage and jointly contribute to the senescence program.
The Plant Cell | 2014
Shilo Rosenwasser; Michaela A. Mausz; Daniella Schatz; Uri Sheyn; Sergey Malitsky; Asaph Aharoni; Eyal Weinstock; Oren Tzfadia; Shifra Ben-Dor; Ester Feldmesser; Georg Pohnert; Assaf Vardi
This study investigated the interaction between the bloom-forming alga Emiliania huxleyi and its specific large virus (EhV) using RNA-seq of the host and virus coupled with metabolomic analyses. Remodeling of host lipid metabolism during infection is revealed. This is mediated, in part, by viral-encoded enzymes for sphingolipid biosynthesis, which are central to the chemical arms race at sea. Marine viruses are major ecological and evolutionary drivers of microbial food webs regulating the fate of carbon in the ocean. We combined transcriptomic and metabolomic analyses to explore the cellular pathways mediating the interaction between the bloom-forming coccolithophore Emiliania huxleyi and its specific coccolithoviruses (E. huxleyi virus [EhV]). We show that EhV induces profound transcriptome remodeling targeted toward fatty acid synthesis to support viral assembly. A metabolic shift toward production of viral-derived sphingolipids was detected during infection and coincided with downregulation of host de novo sphingolipid genes and induction of the viral-encoded homologous pathway. The depletion of host-specific sterols during lytic infection and their detection in purified virions revealed their novel role in viral life cycle. We identify an essential function of the mevalonate-isoprenoid branch of sterol biosynthesis during infection and propose its downregulation as an antiviral mechanism. We demonstrate how viral replication depends on the hijacking of host lipid metabolism during the chemical “arms race” in the ocean.
Physiologia Plantarum | 2010
Shilo Rosenwasser; Ilona Rot; Andreas J. Meyer; Lewis J. Feldman; Keni Jiang; Haya Friedman
Redox-sensitive GFP (roGFP) localized to different compartments has been shown to be suitable for determination of redox potentials in plants via imaging. Long-term measurements bring out the need for analyzing a large number of samples which are averaged over a large population of cells. Because this goal is too tedious to be achieved by confocal imaging, we have examined the possibility of using a fluorometer to monitor changes in roGFP localized to different subcellular compartments during development and dark-induced senescence. The degree of oxidations determined by a fluorometer for different probes was similar to values obtained by confocal image analysis. Comparison of young and old leaves indicated that in younger cells higher levels of H(2)O(2) were required to achieve full roGFP oxidation, a parameter which is necessary for calculation of the degree of oxidation of the probe and the actual redox potential. Therefore, it is necessary to carefully determine the H(2)O(2) concentration required to achieve full oxidation of the probe. In addition, there is an increase in autofluorescence during development and extended dark stress, which might interfere with the ability to detect changes in oxidation-reduction dependent fluorescence of roGFP. Nevertheless, it was possible to determine the full dynamic range between the oxidized and the reduced forms of the different probes in the various organelles until the third day of darkness and during plant development, thereby enabling further analysis of probe oxidation. Hence, fluorometer measurements of roGFP can be used for extended measurements enabling the processing of multiple samples. It is envisaged that this technology may be applicable to the analysis of redox changes in response to other stresses or to various mutants.
New Phytologist | 2014
Daniella Schatz; Adva Shemi; Shilo Rosenwasser; Helena Sabanay; Sharon G. Wolf; Shifra Ben-Dor; Assaf Vardi
Marine photosynthetic microorganisms are the basis of marine food webs and are responsible for nearly 50% of the global primary production. Emiliania huxleyi forms massive oceanic blooms that are routinely terminated by large double-stranded DNA coccolithoviruses. The cellular mechanisms that govern the replication cycle of these giant viruses are largely unknown. We used diverse techniques, including fluorescence microscopy, transmission electron microscopy, cryoelectron tomography, immunolabeling and biochemical methodologies to investigate the role of autophagy in host–virus interactions. Hallmarks of autophagy are induced during the lytic phase of E. huxleyi viral infection, concomitant with up-regulation of autophagy-related genes (ATG genes). Pretreatment of the infected cells with an autophagy inhibitor causes a major reduction in the production of extracellular viral particles, without reducing viral DNA replication within the cell. The host-encoded Atg8 protein was detected within purified virions, demonstrating the pivotal role of the autophagy-like process in viral assembly and egress. We show that autophagy, which is classically considered as a defense mechanism, is essential for viral propagation and for facilitating a high burst size. This cellular mechanism may have a major impact on the fate of the viral-infected blooms, and therefore on the cycling of nutrients within the marine ecosystem.
Plant Physiology | 2014
Avishai Mor; Eugene Koh; Lev Weiner; Shilo Rosenwasser; Hadas Sibony-Benyamini; Robert Fluhr
Diverse stresses can produce singlet oxygen in a light-independent manner and generate a singlet oxygen transcriptome footprint. The production of singlet oxygen is typically associated with inefficient dissipation of photosynthetic energy or can arise from light reactions as a result of accumulation of chlorophyll precursors as observed in fluorescent (flu)-like mutants. Such photodynamic production of singlet oxygen is thought to be involved in stress signaling and programmed cell death. Here we show that transcriptomes of multiple stresses, whether from light or dark treatments, were correlated with the transcriptome of the flu mutant. A core gene set of 118 genes, common to singlet oxygen, biotic and abiotic stresses was defined and confirmed to be activated photodynamically by the photosensitizer Rose Bengal. In addition, induction of the core gene set by abiotic and biotic selected stresses was shown to occur in the dark and in nonphotosynthetic tissue. Furthermore, when subjected to various biotic and abiotic stresses in the dark, the singlet oxygen-specific probe Singlet Oxygen Sensor Green detected rapid production of singlet oxygen in the Arabidopsis (Arabidopsis thaliana) root. Subcellular localization of Singlet Oxygen Sensor Green fluorescence showed its accumulation in mitochondria, peroxisomes, and the nucleus, suggesting several compartments as the possible origins or targets for singlet oxygen. Collectively, the results show that singlet oxygen can be produced by multiple stress pathways and can emanate from compartments other than the chloroplast in a light-independent manner. The results imply that the role of singlet oxygen in plant stress regulation and response is more ubiquitous than previously thought.
The ISME Journal | 2015
Shiri Graff van Creveld; Shilo Rosenwasser; Daniella Schatz; Ilan Koren; Assaf Vardi
Diatoms are ubiquitous marine photosynthetic eukaryotes that are responsible for about 20% of global photosynthesis. Nevertheless, little is known about the redox-based mechanisms that mediate diatom sensing and acclimation to environmental stress. Here we used a redox-sensitive green fluorescent protein sensor targeted to various subcellular organelles in the marine diatom Phaeodactylum tricornutum, to map the spatial and temporal oxidation patterns in response to environmental stresses. Specific organelle oxidation patterns were found in response to various stress conditions such as oxidative stress, nutrient limitation and exposure to diatom-derived infochemicals. We found a strong correlation between the mitochondrial glutathione (GSH) redox potential (EGSH) and subsequent induction of cell death in response to the diatom-derived unsaturated aldehyde 2E,4E/Z-decadienal (DD), and a volatile halocarbon (BrCN) that mediate trophic-level interactions in marine diatoms. Induction of cell death in response to DD was mediated by oxidation of mitochondrial EGSH and was reversible by application of GSH only within a narrow time frame. We found that cell fate can be accurately predicted by a distinct life-death threshold of mitochondrial EGSH (−335 mV). We propose that compartmentalized redox-based signaling can integrate the input of diverse environmental cues and will determine cell fate decisions as part of algal acclimation to stress conditions.
New Phytologist | 2016
Sergey Malitsky; Carmit Ziv; Shilo Rosenwasser; Shuning Zheng; Daniella Schatz; Ziv Porat; Shifra Ben-Dor; Asaph Aharoni; Assaf Vardi
Viruses that infect marine photosynthetic microorganisms are major ecological and evolutionary drivers of microbial food webs, estimated to turn over more than a quarter of the total photosynthetically fixed carbon. Viral infection of the bloom-forming microalga Emiliania huxleyi induces the rapid remodeling of host primary metabolism, targeted towards fatty acid metabolism. We applied a liquid chromatography-mass spectrometry (LC-MS)-based lipidomics approach combined with imaging flow cytometry and gene expression profiling to explore the impact of viral-induced metabolic reprogramming on lipid composition. Lytic viral infection led to remodeling of the cellular lipidome, by predominantly inducing the biosynthesis of highly saturated triacylglycerols (TAGs), coupled with a significant accumulation of neutral lipids within lipid droplets. Furthermore, TAGs were found to be a major component (77%) of the lipidome of isolated virions. Interestingly, viral-induced TAGs were significantly more saturated than TAGs produced under nitrogen starvation. This study highlights TAGs as major products of the viral-induced metabolic reprogramming during the host-virus interaction and indicates a selective mode of membrane recruitment during viral assembly, possibly by budding of the virus from specialized subcellular compartments. These findings provide novel insights into the role of viruses infecting microalgae in regulating metabolism and energy transfer in the marine environment and suggest their possible biotechnological application in biofuel production.
BMC Genomics | 2014
Ester Feldmesser; Shilo Rosenwasser; Assaf Vardi; Shifra Ben-Dor
BackgroundThe advent of Next Generation Sequencing technologies and corresponding bioinformatics tools allows the definition of transcriptomes in non-model organisms. Non-model organisms are of great ecological and biotechnological significance, and consequently the understanding of their unique metabolic pathways is essential. Several methods that integrate de novo assembly with genome-based assembly have been proposed. Yet, there are many open challenges in defining genes, particularly where genomes are not available or incomplete. Despite the large numbers of transcriptome assemblies that have been performed, quality control of the transcript building process, particularly on the protein level, is rarely performed if ever. To test and improve the quality of the automated transcriptome reconstruction, we used manually defined and curated genes, several of them experimentally validated.ResultsSeveral approaches to transcript construction were utilized, based on the available data: a draft genome, high quality RNAseq reads, and ESTs. In order to maximize the contribution of the various data, we integrated methods including de novo and genome based assembly, as well as EST clustering. After each step a set of manually curated genes was used for quality assessment of the transcripts. The interplay between the automated pipeline and the quality control indicated which additional processes were required to improve the transcriptome reconstruction. We discovered that E. huxleyi has a very high percentage of non-canonical splice junctions, and relatively high rates of intron retention, which caused unique issues with the currently available tools. While individual tools missed genes and artificially joined overlapping transcripts, combining the results of several tools improved the completeness and quality considerably. The final collection, created from the integration of several quality control and improvement rounds, was compared to the manually defined set both on the DNA and protein levels, and resulted in an improvement of 20% versus any of the read-based approaches alone.ConclusionsTo the best of our knowledge, this is the first time that an automated transcript definition is subjected to quality control using manually defined and curated genes and thereafter the process is improved. We recommend using a set of manually curated genes to troubleshoot transcriptome reconstruction.
Plant Physiology | 2013
Shilo Rosenwasser; Robert Fluhr; Janak Raj Joshi; Noam Leviatan; Noa Sela; Amotz Hetzroni; Haya Friedman
The bioinformatic tool, ROSMETER, differentiates different reactive oxygen species, their subcellular origin, to give new insight into senescence and biotic and abiotic stresses. The chemical identity of the reactive oxygen species (ROS) and its subcellular origin will leave a specific imprint on the transcriptome response. In order to facilitate the appreciation of ROS signaling, we developed a tool that is tuned to qualify this imprint. Transcriptome data from experiments in Arabidopsis (Arabidopsis thaliana) for which the ROS type and organelle origin are known were compiled into indices and made accessible by a Web-based interface called ROSMETER. The ROSMETER algorithm uses a vector-based algorithm to portray the ROS signature for a given transcriptome. The ROSMETER platform was applied to identify the ROS signatures profiles in transcriptomes of senescing plants and of those exposed to abiotic and biotic stresses. An unexpected highly significant ROS transcriptome signature of mitochondrial stress was detected during the early presymptomatic stages of leaf senescence, which was accompanied by the specific oxidation of mitochondria-targeted redox-sensitive green fluorescent protein probe. The ROSMETER analysis of diverse stresses revealed both commonalties and prominent differences between various abiotic stress conditions, such as salt, cold, ultraviolet light, drought, heat, and pathogens. Interestingly, early responses to the various abiotic stresses clustered together, independent of later responses, and exhibited negative correlations to several ROS indices. In general, the ROS transcriptome signature of abiotic stresses showed limited correlation to a few indices, while biotic stresses showed broad correlation with multiple indices. The ROSMETER platform can assist in formulating hypotheses to delineate the role of ROS in plant acclimation to environmental stress conditions and to elucidate the molecular mechanisms of the oxidative stress response in plants.