Shilpa Sant
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shilpa Sant.
Advanced Drug Delivery Reviews | 2011
Morteza Mahmoudi; Shilpa Sant; Ben Wang; Sophie Laurent; Tapas Sen
At present, nanoparticles are used for various biomedical applications where they facilitate laboratory diagnostics and therapeutics. More specifically for drug delivery purposes, the use of nanoparticles is attracting increasing attention due to their unique capabilities and their negligible side effects not only in cancer therapy but also in the treatment of other ailments. Among all types of nanoparticles, biocompatible superparamagnetic iron oxide nanoparticles (SPIONs) with proper surface architecture and conjugated targeting ligands/proteins have attracted a great deal of attention for drug delivery applications. This review covers recent advances in the development of SPIONs together with their possibilities and limitations from fabrication to application in drug delivery. In addition, the state-of-the-art synthetic routes and surface modification of desired SPIONs for drug delivery purposes are described.
Advanced Materials | 2013
Akhilesh K. Gaharwar; Silvia M. Mihaila; Archana Swami; Alpesh Patel; Shilpa Sant; Rui L. Reis; Alexandra P. Marques; Manuela E. Gomes; Ali Khademhosseini
Novel silicate nanoplatelets that induce osteogenic differentiation of human mesenchymal stem cells (hMSCs) in the absence of any osteoinductive factor are reported. The presence of the silicate triggers a set of events that follows the temporal pattern of osteogenic differentiation. These findings underscore the potential applications of these silicate nanoplatelets in designing bioactive scaffolds for musculoskeletal tissue engineering.
Biofabrication | 2010
Chang Mo Hwang; Shilpa Sant; Mahdokht Masaeli; Nezamoddin N. Kachouie; Behnam Zamanian; Sang Hoon Lee; Ali Khademhosseini
For tissue engineering applications, scaffolds should be porous to enable rapid nutrient and oxygen transfer while providing a three-dimensional (3D) microenvironment for the encapsulated cells. This dual characteristic can be achieved by fabrication of porous hydrogels that contain encapsulated cells. In this work, we developed a simple method that allows cell encapsulation and pore generation inside alginate hydrogels simultaneously. Gelatin beads of 150-300 microm diameter were used as a sacrificial porogen for generating pores within cell-laden hydrogels. Gelation of gelatin at low temperature (4 degrees C) was used to form beads without chemical crosslinking and their subsequent dissolution after cell encapsulation led to generation of pores within cell-laden hydrogels. The pore size and porosity of the scaffolds were controlled by the gelatin bead size and their volume ratio, respectively. Fabricated hydrogels were characterized for their internal microarchitecture, mechanical properties and permeability. Hydrogels exhibited a high degree of porosity with increasing gelatin bead content in contrast to nonporous alginate hydrogel. Furthermore, permeability increased by two to three orders while compressive modulus decreased with increasing porosity of the scaffolds. Application of these scaffolds for tissue engineering was tested by encapsulation of hepatocarcinoma cell line (HepG2). All the scaffolds showed similar cell viability; however, cell proliferation was enhanced under porous conditions. Furthermore, porous alginate hydrogels resulted in formation of larger spheroids and higher albumin secretion compared to nonporous conditions. These data suggest that porous alginate hydrogels may have provided a better environment for cell proliferation and albumin production. This may be due to the enhanced mass transfer of nutrients, oxygen and waste removal, which is potentially beneficial for tissue engineering and regenerative medicine applications.
Biomaterials | 2010
Daniela F. Coutinho; Shilpa Sant; Hyeongho Shin; João T. Oliveira; Manuela E. Gomes; Nuno M. Neves; Ali Khademhosseini; Rui L. Reis
Gellan Gum (GG) has been recently proposed for tissue engineering applications. GG hydrogels are produced by physical crosslinking methods induced by temperature variation or by the presence of divalent cations. However, physical crosslinking methods may yield hydrogels that become weaker in physiological conditions due to the exchange of divalent cations by monovalent ones. Hence, this work presents a new class of GG hydrogels crosslinkable by both physical and chemical mechanisms. Methacrylate groups were incorporated in the GG chain, leading to the production of a methacrylated Gellan Gum (MeGG) hydrogel with highly tunable physical and mechanical properties. The chemical modification was confirmed by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FTIR-ATR). The mechanical properties of the developed hydrogel networks, with Youngs modulus values between 0.15 and 148 kPa, showed to be tuned by the different crosslinking mechanisms used. The in vitro swelling kinetics and hydrolytic degradation rate were dependent on the crosslinking mechanisms used to form the hydrogels. Three-dimensional (3D) encapsulation of NIH-3T3 fibroblast cells in MeGG networks demonstrated in vitro biocompatibility confirmed by high cell survival. Given the highly tunable mechanical and degradation properties of MeGG, it may be applicable for a wide range of tissue engineering approaches.
Journal of Biomedical Materials Research Part A | 2011
Sherif Soliman; Shilpa Sant; Jason W. Nichol; Masoud Khabiry; Enrico Traversa; Ali Khademhosseini
Porosity has been shown to be a key determinant of the success of tissue engineered scaffolds. A high degree of porosity and an appropriate pore size are necessary to provide adequate space for cell spreading and migration as well as to allow for proper exchange of nutrients and waste between the scaffold and the surrounding environment. Electrospun scaffolds offer an attractive approach for mimicking the natural extracellular matrix (ECM) for tissue engineering applications. The efficacy of electrospinning is likely to depend on the interaction between cells and the geometric features and physicochemical composition of the scaffold. A major problem in electrospinning is the tendency of fibers to accumulate densely, resulting in poor porosity and small pore size. The porosity and pore sizes in the electrospun scaffolds are mainly dependent on the fiber diameter and their packing density. Here we report a method of modulating porosity in three dimensional (3D) scaffolds by simultaneously tuning the fiber diameter and the fiber packing density. Nonwoven poly(ε-caprolactone) mats were formed by electrospinning under various conditions to generate sparse or highly dense micro- and nanofibrous scaffolds and characterized for their physicochemical and biological properties. We found that microfibers with low packing density resulted in improved cell viability, proliferation and infiltration compared to tightly packed scaffolds.
Journal of Tissue Engineering and Regenerative Medicine | 2011
Shilpa Sant; Chang Mo Hwang; Sang Hoon Lee; Ali Khademhosseini
Poly(glycerol sebacate) (PGS) is a biodegradable elastomer that has generated great interest as a scaffold material due to its desirable mechanical properties. However, the use of PGS in tissue engineering is limited by difficulties in casting micro‐ and nanofibrous structures, due to high temperatures and vacuum required for its curing and limited solubility of the cured polymer. In this paper, we developed microfibrous scaffolds made from blends of PGS and poly(ε‐caprolactone) (PCL) using a standard electrospinning set‐up. At a given PGS:PCL ratio, higher voltage resulted in significantly smaller fibre diameters (reduced from ∼4 µm to 2.8 µm; p < 0.05). Further increase in voltage resulted in the fusion of fibres. Similarly, higher PGS concentrations in the polymer blend resulted in significantly increased fibre diameter (p < 0.01). We further compared the mechanical properties of electrospun PGS:PCL scaffolds with those made from PCL. Scaffolds with higher PGS concentrations showed higher elastic modulus (EM), ultimate tensile strength (UTS) and ultimate elongation (UE) (p < 0.01) without the need for thermal curing or photocrosslinking. Biological evaluation of these scaffolds showed significantly improved HUVEC attachment and proliferation compared to PCL‐only scaffolds (p < 0.05). Thus, we have demonstrated that simple blends of PGS prepolymer with PCL can be used to fabricate microfibrous scaffolds with mechanical properties in the range of a human aortic valve leaflet. Copyright
Acta Biomaterialia | 2013
Shilpa Sant; Dharini Iyer; Akhilesh K. Gaharwar; Alpesh Patel; Ali Khademhosseini
The development of living heart valves that grow with the patient is a promising strategy for heart valve replacements in pediatric patients. Despite active research in the field of tissue engineered heart valves there have been limited efforts to optimize the balance between biodegradation of the scaffolds and de novo extracellular matrix (ECM) synthesis by cells and study their consequences on the mechanical properties of the cell-seeded construct. This study investigates the effect of in vitro degradation and ECM secretion on the mechanical properties of hybrid polyester scaffolds. The scaffolds were synthesized from blends of fast degrading polyglycerol sebacate (PGS) and slowly degrading polycaprolactone (PCL). PGS-PCL scaffolds were electrospun using a 2:1 ratio of PGS to PCL. Accelerated hydrolytic degradation in 0.1 mM sodium hydroxide revealed 2-fold faster degradation of PGS-PCL scaffolds compared with PCL scaffolds. Thermal analysis and scanning electron microscopy demonstrated marginal change in PCL scaffold properties, while PGS-PCL scaffolds showed preferential mass loss of PGS and thinning of the individual fibers during degradation. Consequently, the mechanical properties of PGS-PCL scaffolds decreased gradually with no significant change for PCL scaffolds during accelerated degradation. Valvular interstitial cells (VICs) seeded on PGS-PCL scaffolds showed higher ECM protein secretion compared with PCL. Thus the mechanical properties of the cell-seeded PCL scaffolds did not change significantly compared with acellular scaffolds, probably due to slower degradation and ECM deposition by VICs. In contrast, the PGS-PCL scaffolds exhibited a gradual decrease in the mechanical properties of the acellular scaffolds due to degradation, which was compensated for by new matrix secreted by VICs seeded on the scaffolds. Our study demonstrated that the faster degrading PGS component of PGS-PCL accelerated the degradation rate of the scaffolds. VICs, on the other hand, were able to remodel the synthetic scaffold, depositing new matrix proteins and maintaining the mechanical properties of the scaffolds.
Advanced Drug Delivery Reviews | 2012
Shilpa Sant; Sarah L. Tao; Omar Z. Fisher; Qiaobing Xu; Nicholas A. Peppas; Ali Khademhosseini
Micro-/nanoscale technologies such as lithographic techniques and microfluidics offer promising avenues to revolutionalize the fields of tissue engineering, drug discovery, diagnostics and personalized medicine. Microfabrication techniques are being explored for drug delivery applications due to their ability to combine several features such as precise shape and size into a single drug delivery vehicle. They also offer to create unique asymmetrical features incorporated into single or multiple reservoir systems maximizing contact area with the intestinal lining. Combined with intelligent materials, such microfabricated platforms can be designed to be bioadhesive and stimuli-responsive. Apart from drug delivery devices, microfabrication technologies offer exciting opportunities to create biomimetic gastrointestinal tract models incorporating physiological cell types, flow patterns and brush-border like structures. Here we review the recent developments in this field with a focus on the applications of microfabrication in the development of oral drug delivery devices and biomimetic gastrointestinal tract models that can be used to evaluate the drug delivery efficacy.
Biomaterials | 2011
Seda Yamanlar; Shilpa Sant; Thomas Boudou; Catherine Picart; Ali Khademhosseini
Hyaluronic acid (HA), an anionic polysaccharide, is one of the major components of the natural extracellular matrix (ECM). Although HA has been widely used for tissue engineering applications, it does not support cell attachment and spreading and needs chemical modification to support cellular adhesion. Here, we present a simple approach to functionalize photocrosslinked HA hydrogels by deposition of poly(l-lysine) (PLL) and HA multilayer films made by the layer-by-layer (LbL) technique. PLL/HA multilayer film formation was assessed by using fluorescence microscopy, contact angle measurements, cationic dye loading and confocal microscopy. The effect of polyelectrolyte multilayer film (PEM) formation on the physicochemical and mechanical properties of hydrogels revealed polyelectrolyte diffusion inside the hydrogel pores, increased hydrophobicity of the surface, reduced equilibrium swelling, and reduced compressive moduli of the modified hydrogels. Furthermore, NIH-3T3 fibroblasts seeded on the surface showed improved cell attachment and spreading on the multilayer functionalized hydrogels. Thus, modification of HA hydrogel surfaces with multilayer films affected their physicochemical properties and improved cell adhesion and spreading on these surfaces. This new hydrogel/PEM composite system may offer possibilities for various biomedical and tissue engineering applications, including growth factor delivery and co-culture systems.
Journal of Biomedical Materials Research Part A | 2008
Shilpa Sant; Suzie Poulin; Patrice Hildgen
The aim of the present study was to evaluate the cellular interaction of nanoparticles (NPs) prepared from different pegylated polymers and elucidate the effect of polymer architecture, for instance, grafted versus block copolymer on their cellular uptake. Fluorescein-labeled NPs of four different polymers, viz., poly(D,L-lactide) (PLA), poly(ethylene glycol)(1%)-graft-poly(D,L-lactide) (PEG(1%)-g-PLA), poly(ethylene glycol)(5%)-graft-poly(D,L-lactide) (PEG(5%)-g-PLA), and (poly(D,L-lactide)-block-poly(ethylene glycol)-block-poly(D,L-lactide))(n) multiblock copolymer (PLA-PEG-PLA)(n) were prepared. These NPs were characterized for their size, zeta-potential, and surface morphology. XPS studies revealed possibility of chemical interaction between PLA-COOH groups and PVA-OH groups, thus making it difficult to be washed off the NP surface completely. Grafted polymer NPs showed more surface PEG coverage than (PLA-PEG-PLA)(n) despite of their comparatively lower PEG content. The results of surface properties were translated into protein binding showing least amount of proteins bound to grafted copolymer NPs as against multiblock copolymer NPs. NPs showed no toxicity to RAW 264.7 cells. Cellular uptake of NPs was temperature and concentration-dependent as well as involved clathrin-mediated processes. Thus, this study confirms the importance of polymer architecture in determining the surface properties and hence, protein binding and cellular interactions of NPs. Also, it was shown that grafted copolymer NPs reduced macrophage uptake as compared to multiblock copolymer although mechanisms different than phagocytosis were involved.