Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shima Shahab is active.

Publication


Featured researches published by Shima Shahab.


Smart Materials and Structures | 2008

Active control of natural frequencies of FGM plates by piezoelectric sensor/actuator pairs

Reza Mirzaeifar; H. Bahai; Shima Shahab

An optimization strategy is presented for modifying the dynamic characteristics of functionally graded material (FGM) plates which are actively controlled by piezoelectric sensor/actuator (S/A) pairs. A finite element (FE) model is developed for static and dynamic analysis of FGM plates with collocated piezoelectric sensors and actuators. In this model, the feedback signal to each actuator patch is implemented as a function of the electric potential in its corresponding sensor patch in order to provide active control of the FGM plate in a closed loop system. Using the proposed FE model, a method based on the first-order and second-order approximations in a Taylor expansion is developed to calculate the corresponding changes in the parameters which characterize the piezoelectric patches (i.e. the patch thickness and the feedback gain in each S/A pair) in order to achieve the desired eigenfrequency shifts in the FGM plate. An FGM plate with eight separate S/A pairs is considered as a case study. A sensitivity analysis is initially performed to identify the S/A pairs which have the most influence on the natural frequencies of the plate. The proposed method is used to find a sequence of feedback gains for shifting the natural frequencies to the desired level.


Journal of Applied Physics | 2015

Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

Shima Shahab; M. Gray; Alper Erturk

Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, w...


Smart Materials and Structures | 2014

Contactless ultrasonic energy transfer for wireless systems: acoustic-piezoelectric structure interaction modeling and performance enhancement

Shima Shahab; Alper Erturk

There are several applications of wireless electronic components with little or no ambient energy available to harvest, yet wireless battery charging for such systems is still of great interest. Example applications range from biomedical implants to sensors located in hazardous environments. Energy transfer based on the propagation of acoustic waves at ultrasonic frequencies is a recently explored alternative that offers increased transmitter-receiver distance, reduced loss and the elimination of electromagnetic fields. As this research area receives growing attention, there is an increased need for fully coupled model development to quantify the energy transfer characteristics, with a focus on the transmitter, receiver, medium, geometric and material parameters. We present multiphysics modeling and case studies of the contactless ultrasonic energy transfer for wireless electronic components submerged in fluid. The source is a pulsating sphere, and the receiver is a piezoelectric bar operating in the 33-mode of piezoelectricity with a fundamental resonance frequency above the audible frequency range. The goal is to quantify the electrical power delivered to the load (connected to the receiver) in terms of the source strength. Both the analytical and finite element models have been developed for the resulting acoustic-piezoelectric structure interaction problem. Resistive and resistive–inductive electrical loading cases are presented, and optimality conditions are discussed. Broadband power transfer is achieved by optimal resistive-reactive load tuning for performance enhancement and frequency-wise robustness. Significant enhancement of the power output is reported due to the use of a hard piezoelectric receiver (PZT-8) instead of a soft counterpart (PZT-5H) as a result of reduced material damping. The analytical multiphysics modeling approach given in this work can be used to predict and optimize the coupled system dynamics with very good accuracy and dramatically improved computational efficiency compared to the use of commercial finite element packages.


Smart Materials and Structures | 2016

Electrohydroelastic Euler–Bernoulli–Morison model for underwater resonant actuation of macro-fiber composite piezoelectric cantilevers

Shima Shahab; Alper Erturk

Bio-inspired hydrodynamic thrust generation using smart materials has received growing attention over the past few years to enable improved maneuverability and agility, small form factor, reduced power consumption, and ease of fabrication in next-generation aquatic swimmers. In order to develop a high-fidelity model to predict the electrohydroelastic dynamics of macro-fiber composite (MFC) piezoelectric structures, in this work, mixing rules-based (i.e. rule of mixtures) electroelastic mechanics formulation is coupled with the global electroelastic dynamics based on the Euler–Bernoulli kinematics and nonlinear fluid loading based on Morisons semi-empirical model. The focus is placed on the dynamic actuation problem for the first two bending vibration modes under geometrically and materially linear, hydrodynamically nonlinear behavior. The electroelastic and dielectric properties of a representative volume element (piezoelectric fiber and epoxy matrix) between two subsequent interdigitated electrodes are correlated to homogenized parameters of MFC bimorphs and validated for a set of MFCs that have the same overhang length but different widths. Following this process of electroelastic model development and validation, underwater actuation experiments are conducted for different length-to-width aspect ratios (L/b) in quiescent water, and the empirical drag and inertia coefficients are extracted from Morisons equation to establish the electrohydroelastic model. The repeatability of these empirical coefficients is demonstrated for experiments conducted using aluminum cantilevers of different aspect ratios with a focus on the first two bending modes. The convergence of the nonlinear electrohydroelastic Euler–Bernoulli–Morison model to its hydrodynamically linear counterpart for increased L/b values is also reported. The proposed model, its harmonic balance analysis, and experimental results can be used not only for underwater piezoelectric actuation, but also for sensing and energy harvesting problems.


Journal of Intelligent Material Systems and Structures | 2017

Coupling of experimentally validated electroelastic dynamics and mixing rules formulation for macro-fiber composite piezoelectric structures:

Shima Shahab; Alper Erturk

Piezoelectric structures have been used in a variety of applications ranging from vibration control and sensing to morphing and energy harvesting. In order to employ the effective 33-mode of piezoelectricity, interdigitated electrodes have been used in the design of macro-fiber composites which employ piezoelectric fibers with rectangular cross section. In this article, we present an investigation of the two-way electroelastic coupling (in the sense of direct and converse piezoelectric effects) in bimorph cantilevers that employ interdigitated electrodes for 33-mode operation. A distributed-parameter electroelastic modeling framework is developed for the elastodynamic scenarios of piezoelectric power generation and dynamic actuation. Mixing rules (i.e. rule of mixtures) formulation is employed to evaluate the equivalent and homogenized properties of macro-fiber composite structures. The electroelastic and dielectric properties of a representative volume element (piezoelectric fiber and epoxy matrix) between two neighboring interdigitated electrodes are then coupled with the global electro-elastodynamics based on the Euler–Bernoulli kinematics accounting for two-way electromechanical coupling. Various macro-fiber composite bimorph cantilevers with different widths are tested for resonant dynamic actuation and power generation with resistive shunt damping. Excellent agreement is reported between the measured electroelastic frequency response and predictions of the analytical framework that bridges the continuum electro-elastodynamics and mixing rules formulation.


Proceedings of SPIE | 2015

Unified electrohydroelastic investigation of underwater energy harvesting and dynamic actuation by incorporating Morison's equation

Shima Shahab; Alper Erturk

In this work, Macro-Fiber Composite (MFC)-based piezoelectric structures are employed for underwater mechanical base excitation (vibration energy harvesting) and electrical biomimetic actuation in bending operation at low frequencies. The MFC technology (fiber-based piezoelectric composites with interdigitated electrodes) exploits the effective 33-mode of piezoelectricity and strikes a balance between structural deformation and force levels for actuation to use in underwater locomotion, in addition to offering high power density for energy harvesting to enable battery-less underwater sensors. Following in-air electroelastic composite model development, it is aimed to establish semianalytical models that can predict the underwater dynamics of thin MFC cantilevers for different length-to-width aspect ratios. In-air analytical electroelastic dynamics of MFCs is therefore coupled with added mass and nonlinear hydrodynamic damping effects of fluid to describe the underwater electrohydroelastic dynamics in harvesting and actuation. To this end, passive plates of different aspect ratios are tested to extract and explore the repeatability of the inertia and drag coefficients in Morison’s equation. The focus is placed on the first two bending modes in this semianalytical approach. Additionally, nonlinear dependence of the output power density to aspect ratio is characterized theoretically and experimentally in the underwater base excitation problem.


Volume 2: Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Bioinspired Smart Materials and Systems; Energy Harvesting | 2014

Underwater Dynamic Actuation of Macro-Fiber Composite Flaps With Different Aspect Ratios: Electrohydroelastic Modeling, Testing, and Characterization

Shima Shahab; Alper Erturk

Macro-fiber composite (MFC) actuators offer simple and scalable design, robustness, noiseless performance, strong electromechanical coupling, and particularly a balance between the actuation force and deformation capabilities, which is essential to effective and agile biomimetic locomotion. Recent efforts in our lab have shown that MFC bimorphs with polyester electrode sheets can successfully be employed for fish-like aquatic locomotion in both tethered and untethered operation. MFC swimmers can outperform other smart material-based counterparts, such as the compliant ionic polymer-metal composite based swimmers, in terms of swimming speed per body length. Cantilevered flaps made of MFC bimorphs with different aspect ratios can be employed for underwater actuation, sensing, and power generation, among other aquatic applications of direct and converse piezoelectric effects. In an effort to develop linearized electrohydroelastic models for such cantilevers, the present work investigates MFC bimorphs with three different aspect ratios. The MFCs used in this study use the 33-mode of piezoelectricity with interdigitated electrodes. Underwater dynamic actuation frequency response functions (FRFs) of the MFCs are defined as the tip velocity per actuation voltage (tip velocity FRF) and current consumption per actuation voltage (admittance FRF). The tip velocity and admittance FRFs are modeled analytically for in-air actuation and validated experimentally for all aspect ratios. Underwater tip velocity and admittance FRFs are then derived by combining their in-air counterparts with corrected hydrodynamic functions. The corrected hydrodynamic functions are also identified from aluminum cantilevers of similar aspect ratios. Both tip vibration and current consumption per voltage input are explored. The failure of Sader’s hydrodynamic function for low length-to-width aspect ratios is shown. Very good correlation is observed between model simulations and experimental measurements using aspect ratio-dependent, corrected hydrodynamic function.Copyright


Proceedings of SPIE | 2014

Electrohydroelastic dynamics of macro-fiber composites for underwater energy harvesting from base excitation

Shima Shahab; Alper Erturk

Low-power electronic systems are used in various underwater applications ranging from naval sensor networks to ecological monitoring for sustainability. In this work, underwater base excitation of cantilevers made of Macro-Fiber Composite (MFC) piezoelectric structures is explored experimentally and theoretically to harvest energy for such wireless electronic components toward enabling self-powered underwater systems. Bimorph cantilevers made of MFCs with different length-to-width ratios and same thickness are tested in air and under water to characterize the change in natural frequency and damping with a focus on the fundamental bending mode. The real and imaginary parts of hydrodynamic frequency response functions are identified and corrected based on this set of experiments. An electrohydroelastic model is developed and experimentally validated for predicting the power delivered to an electrical load as well as the shunted underwater vibration response under base excitation. Variations of the electrical power output with excitation frequency and load resistance are obtained for different length-to-width ratios. Underwater power density results are reported and compared with their in-air counterparts. Specifically a nonlinear dependence of the power density to the cantilever width is reported for energy harvesting from underwater base excitation.


Proceedings of SPIE | 2015

An experimentally validated contactless acoustic energy transfer model with resistive-reactive electrical loading

Shima Shahab; M. Gray; Alper Erturk

This paper investigates analytical modeling and experimental validation of Ultrasonic Acoustic Energy Transfer (UAET) for low-power electricity transfer to exploit in wireless applications ranging from medical implants to underwater sensor systems. A piezoelectric receiver bar is excited by incident acoustic waves originating from a source of known strength located at a specific distance from the receiver. The receiver is a free-free piezoelectric cylinder operating in the 33- mode of piezoelectricity with a fundamental resonance frequency above the audible frequency range. In order to extract the electrical power output, the piezoelectric receiver bar is shunted to a generalized resistive-reactive circuit. The goal is to quantify the electrical power delivered to the load (connected to the receiver) in terms of the source strength. Experimental validations are presented along with parameter optimization studies. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the receiver’s underwater resonance frequency, source-to-receiver distance, and source-strength level are reported. Resistive and resistive-reactive electrical loading cases are discussed for performance enhancement and frequency-wise robustness. Simulations and experiments reveal that the presented multiphysics analytical model for UAET can be used to predict the coupled system dynamics with very good accuracy.


ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference | 2015

Experimentally Validated Nonlinear Electrohydroelastic Euler-Bernoulli-Morison Model for Macro-Fiber Composites With Different Aspect Ratios

Shima Shahab; Alper Erturk

Macro-fiber composite (MFC) piezoelectric structures with interdigitated electrodes can be used for effective hydrodynamic thrust generation by underwater actuation as well as low-power electricity production from underwater vibrations for powering wireless electronic components. In order to develop high-fidelity models to predict the electrohydroelastic dynamics of MFC structures, mixing rules based electroelastic mechanics modeling is coupled with the global electroelastic dynamics based on the Euler-Bernoulli kinematics and the nonlinear fluid loading based on Morison’s semi-empirical model. The focus is placed on the dynamic actuation problem for the first two bending vibration modes under geometrically, materially, and piezoelectrically linear, hydrodynamically nonlinear behavior. The electroelastic and dielectric properties of a representative volume element (piezoelectric fiber and epoxy matrix) between two subsequent interdigitated electrodes are correlated to physical parameters of MFC bimorphs and validated for different MFC types that have the same overhang length but different widths. Following the process of in-air electroelastic model development and validation, underwater experiments are conducted for different length-to-width aspect ratios (L/b), and empirical drag and inertia coefficients are extracted for Morison’s equation. The repeatability of these empirical coefficients is demonstrated for experiments conducted using aluminum cantilevers of different aspect ratios. Convergence of the nonlinear electrohydroelastic Euler-Bernoulli-Morison model to its hydrodynamically linear counterpart with increased L/b values is also reported. The proposed model, its harmonic balance analysis, and experimental results can be used for parameter identification as well as aspect ratio optimization for underwater piezoelectric actuation, sensing, and energy harvesting problems.Copyright

Collaboration


Dive into the Shima Shahab's collaboration.

Top Co-Authors

Avatar

Alper Erturk

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Bahai

Brunel University London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Tan

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Gray

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge