Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shimelis Admassie is active.

Publication


Featured researches published by Shimelis Admassie.


Talanta | 2012

Polymer modified glassy carbon electrode for the electrochemical determination of caffeine in coffee.

Meareg Amare; Shimelis Admassie

4-Amino-3-hydroxynaphthalene sulfonic acid (AHNSA) was electropolymerized on a glassy carbon electrode. The deposited film showed electrocatalytic activity towards the oxidation of caffeine. The polymer-modified electrode showed high sensitivity, selectivity and stability in the determination of caffeine in coffee. The peak current increased linearly with the concentration of caffeine in the range of 6 × 10(-8) to 4 × 10(-5) mol L(-1), with a detection limit of 1.37 × 10(-7) mol L(-1) (LoD = 3δ/slope). Analysis of caffeine in coffee was affected neither by sample matrices nor by structurally similar compounds. Recoveries ranging between 93.75 ± 2.32 and 100.75 ± 3.32 were achieved from coffee extracts indicating the applicability of the developed method for real sample analyses.


Talanta | 2011

Simultaneous determination of N-acetyl-p-aminophenol and p-aminophenol with poly(3,4-ethylenedioxythiophene) modified glassy carbon electrode

Solomon Mehretie; Shimelis Admassie; Tadele Hunde; Merid Tessema; Theodros Solomon

A sensitive and selective method was developed for the determination of N-acetyl-p-aminophenol (APAP) and p-aminophenol (PAP) using poly(3,4-ethylenedioxythiophene) (PEDOT)-modified glassy carbon electrode (GCE). Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical reaction of APAP and PAP at the modified electrode. Both APAP and PAP showed quasireversible redox reactions with formal potentials of 367 mV and 101 mV (vs. Ag/AgCl), respectively, in phosphate buffer solution of pH 7.0. The significant peak potential difference (266 mV) between APAP and PAP enabled the simultaneous determination both species based on differential pulse voltammetry. The voltammetric responses gave linear ranges of 1.0×10(-6)-1.0×10(-4) mol L(-1) and 4.0×10(-6)-3.2×10(-4) mol L(-1), with detection limits of 4.0×10(-7) mol L(-1) and 1.2×10(-6) mol L(-1) for APAP and PAP, respectively. The method was successfully applied for the determination of APAP and PAP in pharmaceutical formulations and biological samples.


Food Chemistry | 2016

Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode

Molla Tefera; Alemnew Geto; Merid Tessema; Shimelis Admassie

Poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode (poly(AHNSA)/GCE) was prepared for simultaneous determination of caffeine and paracetamol using square-wave voltammetry. The method was used to study the effects of pH and scan rate on the voltammetric response of caffeine and paracetamol. Linear calibration curves in the range of 10-125μM were obtained for both caffeine and paracetamol in acetate buffer solution of pH 4.5 with a correlation coefficient of 0.9989 and 0.9986, respectively. The calculated detection limits (S/N=3) were 0.79μM for caffeine and 0.45μM for paracetamol. The effects of some interfering substances in the determination of caffeine and paracetamol were also studied and their interferences were found to be negligible which proved the selectivity of the modified electrode. The method was successfully applied for the quantitative determination of caffeine and paracetamol in Coca-Cola, Pepsi-Cola and tea samples.


Advanced Materials | 2014

25th Anniversary Article: Organic Photovoltaic Modules and Biopolymer Supercapacitors for Supply of Renewable Electricity: A Perspective from Africa

Olle Inganäs; Shimelis Admassie

The role of materials in civilization is well demonstrated over the centuries and millennia, as materials have come to serve as the classifier of stages of civilization. With the advent of materials science, this relation has become even more pronounced. The pivotal role of advanced materials in industrial economies has not yet been matched by the influence of advanced materials during the transition from agricultural to modern societies. The role of advanced materials in poverty eradication can be very large, in particular if new trajectories of social and economic development become possible. This is the topic of this essay, different in format from the traditional scientific review, as we try to encompass not only two infant technologies of solar energy conversion and storage by means of organic materials, but also the social conditions for introduction of the technologies. The development of organic-based photovoltaic energy conversion has been rapid, and promises to deliver new alternatives to well-established silicon photovoltaics. Our recent development of organic biopolymer composite electrodes opens avenues towards the use of renewable materials in the construction of wooden batteries or supercapacitors for charge storage. Combining these new elements may give different conditions for introduction of energy technology in areas now lacking electrical grids, but having sufficient solar energy inputs. These areas are found close to the equator, and include some of the poorest regions on earth.


Chemsuschem | 2013

Enhanced Lithium Battery with Polyethylene Oxide-Based Electrolyte Containing Silane–Al2O3 Ceramic Filler

Berhanu Zewde; Shimelis Admassie; Jutta Zimmermann; Christian Schulze Isfort; Bruno Scrosati; Jusef Hassoun

A solid polymer electrolyte prepared by using a solvent-free, scalable technique is reported. The membrane is formed by low-energy ball milling followed by hot-pressing of dry powdered polyethylene oxide polymer, LiCF3 SO3 salt, and silane-treated Al2 O3 (Al2 O3 -ST) ceramic filler. The effects of the ceramic fillers on the properties of the ionically conducting solid electrolyte membrane are characterized by using electrochemical impedance spectroscopy, XRD, differential scanning calorimeter, SEM, and galvanostatic cycling in lithium cells with a LiFePO4 cathode. We demonstrate that the membrane containing Al2 O3 -ST ceramic filler performs well in terms of ionic conductivity, thermal properties, and lithium transference number. Furthermore, we show that the lithium cells, which use the new electrolyte together with the LiFePO4 electrode, operate within 65 and 90 °C with high efficiency and long cycle life. Hence, the Al2 O3 -ST ceramic can be efficiently used as a ceramic filler to enhance the performance of solid polymer electrolytes in lithium batteries.


Journal of Materials Chemistry | 2014

A renewable biopolymer cathode with multivalent metal ions for enhanced charge storage

Shimelis Admassie; Anders Elfwing; Edwin Jager; Qinye Bao; Olle Inganäs

A ternary composite supercapacitor electrode consisting of phosphomolybdic acid (HMA), a renewable biopolymer, lignin, and polypyrrole was synthesized by a simple one-step simultaneous electrochemical deposition and characterized by electrochemical methods. It was found that the addition of HMA increased the specific capacitance of the polypyrrole–lignin composite from 477 to 682 F g−1 (at a discharge current of 1 A g−1) and also significantly improved the charge storage capacity from 69 to 128 mA h g−1.


Materials horizons | 2016

Biopolymer hybrid electrodes for scalable electricity storage

Shimelis Admassie; Fátima Ajjan; Anders Elfwing; Olle Inganäs

Powering the future, while maintaining a cleaner environment and a strong socioeconomic growth, is going to be one of the biggest challenges faced by mankind in the 21st century. The first step in overcoming the challenge for a sustainable future is to use energy more efficiently so that the demand for fossil fuels can be reduced drastically. The second step is a transition from the use of fossil fuels to renewable energy sources. In this sense, organic electrode materials are becoming increasingly attractive compared to inorganic electrode materials which have reached a plateau regarding performance and have severe drawbacks in terms of cost, safety and environmental friendliness. Using organic composites based on conducting polymers, such as polypyrrole, and abundant, cheap and naturally occurring biopolymers rich in quinones, such as lignin, has recently emerged as an interesting alternative. These materials, which exhibit electronic and ionic conductivity, provide challenging opportunities in the development of new charge storage materials. This review presents an overview of recent developments in organic biopolymer composite electrodes as renewable electroactive materials towards sustainable, cheap and scalable energy storage devices.


Journal of The Electrochemical Society | 2004

Electrochromism in Diffractive Conducting Polymer Gratings

Shimelis Admassie; Olle Inganäs

The electrochromic polymer poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT-PSS) spin-coated on ITO/glass was patterned with a soft lithographic method in order to diffract the incid ...


Analyst | 2012

Stripping voltammetric determination of pyridine-2-aldoxime methochloride at the iron(III) doped zeolite modified glassy carbon electrode

Solomon Mehretie; José Losada; Merid Tessema; Shimelis Admassie; Theodros Solomon; Joaquín Pérez-Pariente; Isabel Díaz

An iron(III) doped zeolite modified glassy carbon electrode was constructed for the determination of pyridine-2-aldoxime methochloride. X-ray diffraction and chemical analysis were utilized to determine the optimum pH and chemical content for doping zeolite. Cyclic voltammetry was used to characterize the modified electrode and study the kinetics of the acid treated and untreated modified electrode. Acid treatment of the modified electrode showed a better electrochemical behavior compared to the untreated iron(III) doped zeolite modified electrode. Square wave anodic stripping voltammetry was employed to investigate the working pH and preconcentration time. The analytical performance of the modified electrode was evaluated, and a linear anodic stripping response for pyridine-2-aldoxime methochloride in the concentration range of 0.5-100.0 μM with a detection limit of 1.61 × 10(-7) M was obtained. Finally, the developed method was successfully applied for the determination of pyridine-2-aldoxime methochloride in a biological sample.


Advanced Materials | 2017

Bioinspired Redox‐Active Catechol‐Bearing Polymers as Ultrarobust Organic Cathodes for Lithium Storage

Nagaraj Patil; Abdelhafid Aqil; Farid Ouhib; Shimelis Admassie; Olle Inganäs; Christine Jérôme; Christophe Detrembleur

Redox-active catechols are bioinspired precursors for ortho-quinones that are characterized by higher discharge potentials than para-quinones, the latter being extensively used as organic cathode materials for lithium ion batteries (LIBs). Here, this study demonstrates that the rational molecular design of copolymers bearing catechol- and Li+ ion-conducting anionic pendants endow redox-active polymers (RAPs) with ultrarobust electrochemical energy storage features when combined to carbon nanotubes as a flexible, binder-, and metal current collector-free buckypaper electrode. The importance of the structure and functionality of the RAPs on the battery performances in LIBs is discussed. The structure-optimized RAPs can store high-capacities of 360 mA h g-1 at 5C and 320 mA h g-1 at 30C in LIBs. The high ion and electron mobilities within the buckypaper also enable to register 96 mA h g-1 (24% capacity retention) at an extreme C-rate of 600C (6 s for total discharge). Moreover, excellent cyclability is noted with a capacity retention of 98% over 3400 cycles at 30C. The high capacity, superior active-material utilization, ultralong cyclability, and excellent rate performances of RAPs-based electrode clearly rival most of the state-of-the-art Li+ ion organic cathodes, and opens up new horizons for large-scalable fabrication of electrode materials for ultrarobust Li storage.

Collaboration


Dive into the Shimelis Admassie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge