Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shimpei Higo is active.

Publication


Featured researches published by Shimpei Higo.


Molecular and Cellular Endocrinology | 2008

Estrogen synthesis in the brain—Role in synaptic plasticity and memory

Yasushi Hojo; Gen Murakami; Hideo Mukai; Shimpei Higo; Yusuke Hatanaka; Mari Ogiue-Ikeda; Hirotaka Ishii; Tetsuya Kimoto; Suguru Kawato

Estrogen and androgen are synthesized from cholesterol locally in hippocampal neurons of adult animals. These neurosteroids are synthesized by cytochrome P450s and hydroxysteroid dehydrogenases (HSDs) and 5alpha-reductase. The expression levels of enzymes are as low as 1/200-1/50,000 of those in endocrine organs, however these numbers are high enough for local synthesis. Localization of P450(17alpha), P450arom, 17beta-HSD and 5alpha-reductase is observed in principal glutamatergic neurons in CA1, CA3 and the dendate gyrus. Several nanomolar levels of estrogen and androgen are observed in the hippocampus. Estrogen modulates memory-related synaptic plasticity not only slowly but also rapidly in the hippocampus. Rapid action of 17beta-estradiol via membrane receptors is demonstrated for spinogenesis and long-term depression (LTD). The enhancement of LTD by 1-10nM estradiol occurs within 1 h. The density of spine is increased in CA1 pyramidal neurons within 2h after application of estradiol. The density of spine-like structure is, however, decreased by estradiol in CA3 pyramidal neurons. ERalpha, but not ERbeta, induces the same enhancement/suppression effects on both spinogenesis and LTD.


Endocrinology | 2009

Comparison between Hippocampus-Synthesized and Circulation-Derived Sex Steroids in the Hippocampus

Yasushi Hojo; Shimpei Higo; Hirotaka Ishii; Yuuki Ooishi; Hideo Mukai; Gen Murakami; Toshihiro Kominami; Tetsuya Kimoto; Seijiro Honma; Donald Poirier; Suguru Kawato

Estradiol (E2) and other sex steroids play essential roles in the modulation of synaptic plasticity and neuroprotection in the hippocampus. To clarify the mechanisms for these events, it is important to determine the respective role of circulating vs. locally produced sex steroids in the male hippocampus. Liquid chromatography-tandem mass spectrometry in combination with novel derivatization was employed to determine the concentration of sex steroids in adult male rat hippocampus. The hippocampal levels of 17beta-E2, testosterone (T), and dihydrotestosterone (DHT) were 8.4, 16.9, and 6.6 nm, respectively, and these levels were significantly higher than circulating levels. The hippocampal estrone (E1) level was, in contrast, very low around 0.015 nm. After castration to deplete circulating high level T, hippocampal levels of T and DHT decreased considerably to 18 and 3%, respectively, whereas E2 level only slightly decreased to 83%. The strong reduction in hippocampal DHT resulting from castration implies that circulating T may be a main origin of DHT. In combination with results obtained from metabolism analysis of [(3)H]steroids, we suggest that male hippocampal E2 synthesis pathway may be androstenedione --> T --> E2 or dehydroepiandrosterone --> androstenediol --> T --> E2 but not androstenedione --> E1 --> E2.


Biochimica et Biophysica Acta | 2010

Modulation of synaptic plasticity by brain estrogen in the hippocampus

Hideo Mukai; Tetsuya Kimoto; Yasushi Hojo; Suguru Kawato; Gen Murakami; Shimpei Higo; Yusuke Hatanaka; Mari Ogiue-Ikeda

The hippocampus is a center for learning and memory as well as a target of Alzheimers disease in aged humans. Synaptic modulation by estrogen is essential to understand the molecular mechanisms of estrogen replacement therapy. Because the local synthesis of estrogen occurs in the hippocampus of both sexes, in addition to the estrogen supply from the gonads, its functions are attracting much attention. Hippocampal estrogen modulates memory-related synaptic plasticity not only slowly but also rapidly. Slow actions of 17ß-estradiol (17ß-E2) occur via classical nuclear receptors (ERα or ERß), while rapid E2 actions occur via synapse-localized ERα or ERß. Elevation or decrease of the E2 concentration changes rapidly the density and morphology of spines in CA1-CA3 neurons. ERα, but not ERß, drives this enhancement/suppression of spinogenesis. Kinase networks are involved downstream of ERα. The long-term depression but not the long-term potentiation is modulated rapidly by changes of E2 level. Determination of the E2 concentration in the hippocampus is enabled by mass-spectrometry in combination with derivatization methods. The E2 level in the hippocampus is as high as approx. 8 nM for the male and 0.5-2 nM for the female, which is much higher than that in circulation. Therefore, hippocampus-derived E2 plays a major role in modulation of synaptic plasticity. Many hippocampal slice experiments measure the restorative effects of E2 by supplementation of E2 to E2-depleted slices. Accordingly, isolated slice experiments can be used as in vitro models of in vivo estrogen replacement therapy for ovariectomized female animals with depleted circulating estrogen.


Frontiers in Neural Circuits | 2013

Female hippocampal estrogens have a significant correlation with cyclic fluctuation of hippocampal spines

Asami Kato; Yasushi Hojo; Shimpei Higo; Yoshimasa Komatsuzaki; Gen Murakami; Hinako Yoshino; Masanao Uebayashi; Suguru Kawato

Synaptic plasticity of the female hippocampus may cyclically fluctuate across the estrous cycle. The spine density fluctuation had been explained by fluctuation of plasma estradiol (E2) and progesterone (PROG), with the assumption that these steroids penetrate into the hippocampus. Recently, however, we demonstrated that male hippocampal levels of sex steroids are much higher than those in plasma, suggesting a weak contribution of plasma steroids to the spine density. By combination of mass-spectrometric analysis with HPLC-purification and picolinoyl-derivatization of hippocampal sex steroids, we determined the accurate concentration of E2 and PROG at four stages of plasma estrous cycle including Proestrus (Pro), Estrus (Est), Diestrus 1 (D1), and Diestrus 2 (D2). Hippocampal levels of E2 and PROG showed cyclic fluctuation with a peak at Pro for E2 and at D1 for PROG, having a positive correlation with the plasma estrous cycle. All these sex steroid levels are much higher in the hippocampus than in plasma. Even after ovariectomy a significant levels of E2 and PROG were observed in the hippocampus. The total spine density showed higher values at Pro and D1, and lower values at Est and D2, having a good correlation with the peak levels of hippocampal E2 or PROG. We also examined fluctuation of the head diameter of spines. Interestingly, mRNA expression level of steroidogenic enzymes (P450arom and 17β-HSD, etc.) and sex-steroid receptors did not significantly change across the estrous cycle. Therefore, the fluctuation of total hippocampal PROG (equal to sum of hippocampus-synthesized PROG and plasma PROG) may be originated from the contribution of cyclic change in plasma PROG, which can induce the fluctuation of total hippocampal E2, since steroid conversion activity of hippocampus might be nearly the same across the estrus cycle.


The Journal of Steroid Biochemistry and Molecular Biology | 2012

Modulation of synaptic plasticity in the hippocampus by hippocampus-derived estrogen and androgen ☆

Yuuki Ooishi; Suguru Kawato; Yasushi Hojo; Yusuke Hatanaka; Shimpei Higo; Gen Murakami; Yoshimasa Komatsuzaki; Mari Ogiue-Ikeda; Tetsuya Kimoto; Hideo Mukai

The hippocampus synthesizes estrogen and androgen in addition to the circulating sex steroids. Synaptic modulation by hippocampus-derived estrogen or androgen is essential to maintain healthy memory processes. Rapid actions (1-2h) of 17β-estradiol (17β-E2) occur via synapse-localized receptors (ERα or ERβ), while slow genomic E2 actions (6-48h) occur via classical nuclear receptors (ERα or ERβ). The long-term potentiation (LTP), induced by strong tetanus or theta-burst stimulation, is not further enhanced by E2 perfusion in adult rats. Interestingly, E2 perfusion can rescue corticosterone (stress hormone)-induced suppression of LTP. The long-term depression is modulated rapidly by E2 perfusion. Elevation of the E2 concentration changes rapidly the density and head structure of spines in neurons. ERα, but not ERβ, drives this enhancement of spinogenesis. Kinase networks are involved downstream of ERα. Testosterone (T) or dihydrotestosterone (DHT) also rapidly modulates spinogenesis. Newly developed Spiso-3D mathematical analysis is used to distinguish these complex effects by sex steroids and kinases. It has been doubted that the level of hippocampus-derived estrogen and androgen may not be high enough to modulate synaptic plasticity. Determination of the accurate concentration of E2, T or DHT in the hippocampus is enabled by mass-spectrometric analysis in combination with new steroid-derivatization methods. The E2 level in the hippocampus is approximately 8nM for the male and 0.5-2nM for the female, which is much higher than that in circulation. The level of T and DHT is also higher than that in circulation. Taken together, hippocampus-derived E2, T, and DHT play a major role in modulation of synaptic plasticity.


Frontiers in Endocrinology | 2011

Hippocampal Synthesis of Sex Steroids and Corticosteroids: Essential for Modulation of Synaptic Plasticity

Yasushi Hojo; Shimpei Higo; Suguru Kawato; Yusuke Hatanaka; Yuuki Ooishi; Gen Murakami; Hirotaka Ishii; Yoshimasa Komatsuzaki; Mari Ogiue-Ikeda; Hideo Mukai; Tetsuya Kimoto

Sex steroids play essential roles in the modulation of synaptic plasticity and neuroprotection in the hippocampus. Accumulating evidence shows that hippocampal neurons synthesize both estrogen and androgen. Recently, we also revealed the hippocampal synthesis of corticosteroids. The accurate concentrations of these hippocampus-synthesized steroids are determined by liquid chromatography–tandem mass-spectrometry in combination with novel derivatization. The hippocampal levels of 17β-estradiol (E2), testosterone (T), dihydrotestosterone (DHT), and corticosterone (CORT), are 5–15 nM, and these levels are sufficient to modulate synaptic plasticity. Hippocampal E2 modulates memory-related synaptic plasticity not only slowly/genomically but also rapidly/non-genomically. Slow actions of E2 occur via classical nuclear receptors (ERα or ERβ), while rapid E2 actions occur via synapse-localized or extranuclear ERα or ERβ. Nanomolar concentrations of E2 change rapidly the density and morphology of spines in hippocampal neurons. ERα, but not ERβ, drives this enhancement/suppression of spinogenesis in adult animals. Nanomolar concentrations of androgens (T and DHT) and CORT also increase the spine density. Kinase networks are involved downstream of ERα and androgen receptor. Newly developed Spiso-3D mathematical analysis is useful to distinguish these complex effects by sex steroids and kinases. Significant advance has been achieved in investigations of rapid modulation by E2 of the long-term depression or the long-term potentiation.


Endocrinology | 2010

Semicomprehensive Analysis of the Postnatal Age-Related Changes in the mRNA Expression of Sex Steroidogenic Enzymes and Sex Steroid Receptors in the Male Rat Hippocampus

Tetsuya Kimoto; Hirotaka Ishii; Shimpei Higo; Yasushi Hojo; Suguru Kawato

Although sex steroids play a crucial role in the postnatal brain development, the age-related changes in the hippocampal steroidogenesis remain largely unknown. We performed comprehensive investigations for the mRNA expressions of 26 sex steroidogenic enzymes/proteins and three sex steroid receptors in the male rat hippocampus, at the ages of postnatal day (PD) 1, PD4, PD7, PD10, PD14, 4 wk, and 12 wk (adult), by RT-PCR/Southern blotting analysis. The relative expression levels of these enzymes/receptors at PD1 were Srd5a1 > Star > Ar ∼ Hsd17b4 ∼ Hsd17b1 ∼ Hsd17b7 ∼ Esr1 ∼ Srd5a2 > Hsd17b3 > Esr2 > Cyp11a1 > Cyp17a1 > Cyp19a1 ∼ Hsd17b2 > 3β-hydroxysteroid dehydrogenase I. The mRNA levels of essential enzymes for progesterone/testosterone/estradiol metabolisms (Cyp17a1, Hsd17b7, and Cyp19a1) were approximately constant between PD1 and PD14 and then declined toward the adult levels. Cyp11a1 increased during PD4-PD14 and then considerably decreased toward the adult level (∼8% of PD1). Hsd17b1, Hsd17b2, and 3β-hydroxysteroid dehydrogenase I mRNA decreased approximately monotonously. Hsd17b3 increased to approximately 200% of PD1 during PD4-PD14 and was maintained at this high level. The 5α-reductase mRNA was maintained constant (Srd5a1) or decreased monotonically (Srd5a2) toward the adult level. The Esr1 level peaked at PD4 and decreased toward the adult level, whereas Ar greatly increased during PD1-PD14 and was maintained at this high level. The Star and Hsd17b4 levels were maintained constant from neonate to adult. These results suggest that the hippocampal sex steroidogenic properties are substantially altered during the postnatal development processes, which might contribute to brain sexual maturation.


Neuroscience Letters | 2012

Immunohistochemical analysis of the colocalization of corticotropin-releasing hormone receptor and glucocorticoid receptor in kisspeptin neurons in the hypothalamus of female rats.

Ken Takumi; Norio Iijima; Shimpei Higo; Hitoshi Ozawa

Kisspeptin, a neuropeptide encoded by Kiss1 gene, plays pivotal roles in the regulation of reproductive function. Recently various stressors and stress-induced molecules such as corticotropin-releasing hormone (CRH) and corticosterone have been shown to inhibit Kiss1 expression in rat hypothalamus. To determine whether CRH and glucocorticoids directly act on kisspeptin neurons, we examined the colocalization of CRH receptor (CRH-R) and glucocorticoid receptor (GR) in kisspeptin neurons in the female rat hypothalamus. Double-labeling immunohistochemistry revealed that most kisspeptin neurons in the anteroventral periventricular nucleus and periventricular nucleus continuum (AVPV/PeN), and arcuate nucleus (ARC) expressed CRH-R. We also observed a few close appositions of CRH immunoreactive fibers on some of kisspeptin neurons in AVPV/PeN and ARC. On the other hand, most kisspeptin neurons in AVPV/PeN expressed GR, whereas only a few of kisspeptin neurons in ARC expressed GR. Altogether, our study provides neuroanatomical evidence of the direct modulation of kisspeptin neurons by CRH and glucocorticoids and suggests that stress-induced CRH and glucocorticoids inhibit gonadotropin secretion via the kisspeptin system.


PLOS ONE | 2011

Endogenous Synthesis of Corticosteroids in the Hippocampus

Shimpei Higo; Yasushi Hojo; Hirotaka Ishii; Yoshimasa Komatsuzaki; Yuuki Ooishi; Gen Murakami; Hideo Mukai; Takeshi Yamazaki; Daiichiro Nakahara; Anna M. Barron; Tetsuya Kimoto; Suguru Kawato

Background Brain synthesis of steroids including sex-steroids is attracting much attention. The endogenous synthesis of corticosteroids in the hippocampus, however, has been doubted because of the inability to detect deoxycorticosterone (DOC) synthase, cytochrome P450(c21). Methodology/Principal Findings The expression of P450(c21) was demonstrated using mRNA analysis and immmunogold electron microscopic analysis in the adult male rat hippocampus. DOC production from progesterone (PROG) was demonstrated by metabolism analysis of 3H-steroids. All the enzymes required for corticosteroid synthesis including P450(c21), P450(2D4), P450(11β1) and 3β-hydroxysteroid dehydrogenase (3β-HSD) were localized in the hippocampal principal neurons as shown via in situ hybridization and immunoelectron microscopic analysis. Accurate corticosteroid concentrations in rat hippocampus were determined by liquid chromatography-tandem mass spectrometry. In adrenalectomized rats, net hippocampus-synthesized corticosterone (CORT) and DOC were determined to 6.9 and 5.8 nM, respectively. Enhanced spinogenesis was observed in the hippocampus following application of low nanomolar (10 nM) doses of CORT for 1 h. Conclusions/Significance These results imply the complete pathway of corticosteroid synthesis of ‘pregnenolone →PROG→DOC→CORT’ in the hippocampal neurons. Both P450(c21) and P450(2D4) can catalyze conversion of PROG to DOC. The low nanomolar level of CORT synthesized in hippocampal neurons may play a role in modulation of synaptic plasticity, in contrast to the stress effects by micromolar CORT from adrenal glands.


Biochemical and Biophysical Research Communications | 2009

Comparison of sex-steroid synthesis between neonatal and adult rat hippocampus

Shimpei Higo; Yasushi Hojo; Hirotaka Ishii; Toshihiro Kominami; Kohei Nakajima; Donald Poirier; Tetsuya Kimoto; Suguru Kawato

Sex-steroid synthesis in the hippocampus had been thought to be much more active at the neonatal stage than at the adult stage. However, the detailed comparison between these two stages had not been demonstrated yet. Here we performed the comparison about the mRNA level of steroidogenic enzymes and the rate of steroid metabolism between these two stages of the hippocampus. The relative expression level of P450(17alpha), 17beta- or 3beta-hydroxysteroid dehydrogenase, or P450arom was approximately 1.3-1.5-fold higher at the neonatal than at the adult stage. The rate of sex-steroid metabolism (from dehydroepiandrosterone to estradiol) was 2-7-fold (depending on different steps) more rapid at the neonatal than at the adult stage. Taken together, neonatal steroidogenesis is moderately more active than adult steroidogenesis.

Collaboration


Dive into the Shimpei Higo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge