Shin Han Shiu
Michigan State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shin Han Shiu.
Plant Physiology | 2008
Kousuke Hanada; Cheng Zou; Melissa D. Lehti-Shiu; Kazuo Shinozaki; Shin Han Shiu
Plants have substantially higher gene duplication rates compared with most other eukaryotes. These plant gene duplicates are mostly derived from whole genome and/or tandem duplications. Earlier studies have shown that a large number of duplicate genes are retained over a long evolutionary time, and there is a clear functional bias in retention. However, the influence of duplication mechanism, particularly tandem duplication, on duplicate retention has not been thoroughly investigated. We have defined orthologous groups (OGs) between Arabidopsis (Arabidopsis thaliana) and three other land plants to examine the functional bias of retained duplicate genes during vascular plant evolution. Based on analysis of Gene Ontology categories, it is clear that genes in OGs that expanded via tandem duplication tend to be involved in responses to environmental stimuli, while those that expanded via nontandem mechanisms tend to have intracellular regulatory roles. Using Arabidopsis stress expression data, we further demonstrated that tandem duplicates in expanded OGs are significantly enriched in genes that are up-regulated by biotic stress conditions. In addition, tandem duplication of genes in an OG tends to be highly asymmetric. That is, expansion of OGs with tandem genes in one organismal lineage tends to be coupled with losses in the other. This is consistent with the notion that these tandem genes have experienced lineage-specific selection. In contrast, OGs with genes duplicated via nontandem mechanisms tend to experience convergent expansion, in which similar numbers of genes are gained in parallel. Our study demonstrates that the expansion of gene families and the retention of duplicates in plants exhibit substantial functional biases that are strongly influenced by the mechanism of duplication. In particular, genes involved in stress responses have an elevated probability of retention in a single-lineage fashion following tandem duplication, suggesting that these tandem duplicates are likely important for adaptive evolution to rapidly changing environments.
Plant Physiology | 2014
Michael S. Campbell; MeiYee Law; Carson Holt; Joshua C. Stein; Gaurav D. Moghe; David E. Hufnagel; Jikai Lei; Rujira Achawanantakun; Dian Jiao; Carolyn J. Lawrence; Doreen Ware; Shin Han Shiu; Kevin L. Childs; Yanni Sun; Ning Jiang; Mark Yandell
MAKER-P annotates the entire Arabidopsis and maize genomes in less than 3 h with comparable quality to the current TAIR10 and maize V2 annotation builds. We have optimized and extended the widely used annotation engine MAKER in order to better support plant genome annotation efforts. New features include better parallelization for large repeat-rich plant genomes, noncoding RNA annotation capabilities, and support for pseudogene identification. We have benchmarked the resulting software tool kit, MAKER-P, using the Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) genomes. Here, we demonstrate the ability of the MAKER-P tool kit to automatically update, extend, and revise the Arabidopsis annotations in light of newly available data and to annotate pseudogenes and noncoding RNAs absent from The Arabidopsis Informatics Resource 10 build. Our results demonstrate that MAKER-P can be used to manage and improve the annotations of even Arabidopsis, perhaps the best-annotated plant genome. We have also installed and benchmarked MAKER-P on the Texas Advanced Computing Center. We show that this public resource can de novo annotate the entire Arabidopsis and maize genomes in less than 3 h and produce annotations of comparable quality to those of the current The Arabidopsis Information Resource 10 and maize V2 annotation builds.
Philosophical Transactions of the Royal Society B | 2012
Melissa D. Lehti-Shiu; Shin Han Shiu
Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants.
Plant Physiology | 2016
Nicholas Panchy; Melissa D. Lehti-Shiu; Shin Han Shiu
Gene duplicates are prevalent in plants and in some cases contribute to evolutionary novelty. Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication.
Journal of Experimental Botany | 2011
Marcela A. Carvallo; María Teresa Pino; Zoran Jeknić; Cheng Zou; Colleen J. Doherty; Shin Han Shiu; Tony H. H. Chen; Michael F. Thomashow
Solanum commersonii and Solanum tuberosum are closely related plant species that differ in their abilities to cold acclimate; whereas S. commersonii increases in freezing tolerance in response to low temperature, S. tuberosum does not. In Arabidopsis thaliana, cold-regulated genes have been shown to contribute to freezing tolerance, including those that comprise the CBF regulon, genes that are controlled by the CBF transcription factors. The low temperature transcriptomes and CBF regulons of S. commersonii and S. tuberosum were therefore compared to determine whether there might be differences that contribute to their differences in ability to cold acclimate. The results indicated that both plants alter gene expression in response to low temperature to similar degrees with similar kinetics and that both plants have CBF regulons composed of hundreds of genes. However, there were considerable differences in the sets of genes that comprised the low temperature transcriptomes and CBF regulons of the two species. Thus differences in cold regulatory programmes may contribute to the differences in freezing tolerance of these two species. However, 53 groups of putative orthologous genes that are cold-regulated in S. commersonii, S. tuberosum, and A. thaliana were identified. Given that the evolutionary distance between the two Solanum species and A. thaliana is 112–156 million years, it seems likely that these conserved cold-regulated genes—many of which encode transcription factors and proteins of unknown function—have fundamental roles in plant growth and development at low temperature.
Plant Physiology | 2009
Cheng Zou; Melissa D. Lehti-Shiu; Françoise Thibaud-Nissen; Tanmay Prakash; C. Robin Buell; Shin Han Shiu
Pseudogenes (Ψ) are nonfunctional genomic sequences resembling functional genes. Knowledge of Ψs can improve genome annotation and our understanding of genome evolution. However, there has been relatively little systemic study of Ψs in plants. In this study, we characterized the evolution and expression patterns of Ψs in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). In contrast to animal Ψs, many plant Ψs experienced much stronger purifying selection. In addition, plant Ψs experiencing stronger selective constraints tend to be derived from relatively ancient duplicates, suggesting that they were functional for a relatively long time but became Ψs recently. Interestingly, the regions 5′ to the first stops in the Ψs have experienced stronger selective constraints compared with 3′ regions, suggesting that the 5′ regions were functional for a longer period of time after the premature stops appeared. We found that few Ψs have expression evidence, and their expression levels tend to be lower compared with annotated genes. Furthermore, Ψs with expressed sequence tags tend to be derived from relatively recent duplication events, indicating that Ψ expression may be due to insufficient time for complete degeneration of regulatory signals. Finally, larger protein domain families have significantly more Ψs in general. However, while families involved in environmental stress responses have a significant excess of Ψs, transcription factors and receptor-like kinases have lower than expected numbers of Ψs, consistent with their elevated retention rate in plant genomes. Our findings illustrate peculiar properties of plant Ψs, providing additional insight into the evolution of duplicate genes and benefiting future genome annotation.
PLOS Genetics | 2009
Cheng Zou; Melissa D. Lehti-Shiu; Michael F. Thomashow; Shin Han Shiu
Due to the selection pressure imposed by highly variable environmental conditions, stress sensing and regulatory response mechanisms in plants are expected to evolve rapidly. One potential source of innovation in plant stress response mechanisms is gene duplication. In this study, we examined the evolution of stress-regulated gene expression among duplicated genes in the model plant Arabidopsis thaliana. Key to this analysis was reconstructing the putative ancestral stress regulation pattern. By comparing the expression patterns of duplicated genes with the patterns of their ancestors, duplicated genes likely lost and gained stress responses at a rapid rate initially, but the rate is close to zero when the synonymous substitution rate (a proxy for time) is >∼0.8. When considering duplicated gene pairs, we found that partitioning of putative ancestral stress responses occurred more frequently compared to cases of parallel retention and loss. Furthermore, the pattern of stress response partitioning was extremely asymmetric. An analysis of putative cis-acting DNA regulatory elements in the promoters of the duplicated stress-regulated genes indicated that the asymmetric partitioning of ancestral stress responses are likely due, at least in part, to differential loss of DNA regulatory elements; the duplicated genes losing most of their stress responses were those that had lost more of the putative cis-acting elements. Finally, duplicate genes that lost most or all of the ancestral responses are more likely to have gained responses to other stresses. Therefore, the retention of duplicates that inherit few or no functions seems to be coupled to neofunctionalization. Taken together, our findings provide new insight into the patterns of evolutionary changes in gene stress responses after duplication and lay the foundation for testing the adaptive significance of stress regulatory changes under highly variable biotic and abiotic environments.
Bioinformatics | 2010
Kousuke Hanada; Kenji Akiyama; Tetsuya Sakurai; Tetsuro Toyoda; Kazuo Shinozaki; Shin Han Shiu
SUMMARY sORF finder is a program package for identifying small open reading frames (sORFs) with high-coding potential. This application allows the identification of coding sORFs according to the nucleotide composition bias among coding sequences and the potential functional constraint at the amino acid level through evaluation of synonymous and non-synonymous substitution rates. AVAILABILITY Online tools and source codes are freely available at http://evolver.psc.riken.jp/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
The Plant Cell | 2009
Kousuke Hanada; Veronica A. Vallejo; Kan Nobuta; R. Keith Slotkin; Damon Lisch; Blake C. Meyers; Shin Han Shiu; Ning Jiang
Gene duplication is an important mechanism for evolution of new genes. In plants, a special group of transposable elements, called Pack-MULEs or transduplicates, is able to duplicate and amplify genes or gene fragments on a large scale. Despite the abundance of Pack-MULEs, the functionality of these duplicates is not clear. Here, we present a comprehensive analysis of expression and purifying selection on 2809 Pack-MULEs in rice (Oryza sativa), which are derived from 1501 parental genes. At least 22% of the Pack-MULEs are transcribed, and 28 Pack-MULEs have direct evidence of translation. Chimeric Pack-MULEs, which contain gene fragments from multiple genes, are much more frequently expressed than those derived only from a single gene. In addition, Pack-MULEs are frequently associated with small RNAs. The presence of these small RNAs is associated with a reduction in expression of both the Pack-MULEs and their parental genes. Furthermore, an assessment of the selection pressure on the Pack-MULEs using the ratio of nonsynonymous (Ka) and synonymous (Ks) substitution rates indicates that a considerable number of Pack-MULEs likely have been under selective constraint. The Ka/Ks values of Pack-MULE and parental gene pairs are lower among Pack-MULEs that are expressed in sense orientations. Taken together, our analysis suggests that a significant number of Pack-MULEs are expressed and subjected to purifying selection, and some are associated with small RNAs. Therefore, at least a subset of Pack-MULEs are likely functional and have great potential in regulating gene expression as well as providing novel coding capacities.
The Plant Cell | 2014
Gaurav D. Moghe; David E. Hufnagel; Haibao Tang; Yongli Xiao; Ian Dworkin; Christopher D. Town; Jeffrey K. Conner; Shin Han Shiu
This work compares the genomes of four Brassicaceae species to examine the patterns of gene gains and losses following whole-genome duplication, finding that retained genes showed substantial divergence in sequence, expression, function, and network connectivity. This information was used to establish a statistical learning model for predicting whether a duplicate would be retained postpolyploidization. Polyploidization events are frequent among flowering plants, and the duplicate genes produced via such events contribute significantly to plant evolution. We sequenced the genome of wild radish (Raphanus raphanistrum), a Brassicaceae species that experienced a whole-genome triplication event prior to diverging from Brassica rapa. Despite substantial gene gains in these two species compared with Arabidopsis thaliana and Arabidopsis lyrata, ∼70% of the orthologous groups experienced gene losses in R. raphanistrum and B. rapa, with most of the losses occurring prior to their divergence. The retained duplicates show substantial divergence in sequence and expression. Based on comparison of A. thaliana and R. raphanistrum ortholog floral expression levels, retained radish duplicates diverged primarily via maintenance of ancestral expression level in one copy and reduction of expression level in others. In addition, retained duplicates differed significantly from genes that reverted to singleton state in function, sequence composition, expression patterns, network connectivity, and rates of evolution. Using these properties, we established a statistical learning model for predicting whether a duplicate would be retained postpolyploidization. Overall, our study provides new insights into the processes of plant duplicate loss, retention, and functional divergence and highlights the need for further understanding factors controlling duplicate gene fate.