Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shin-ichi Muramatsu is active.

Publication


Featured researches published by Shin-ichi Muramatsu.


Journal of Virology | 2005

Unrestricted Hepatocyte Transduction with Adeno-Associated Virus Serotype 8 Vectors in Mice

Hiroyuki Nakai; Sally Fuess; Theresa A. Storm; Shin-ichi Muramatsu; Yuko Nara; Mark A. Kay

ABSTRACT Recombinant adeno-associated virus (rAAV) vectors can mediate long-term stable transduction in various target tissues. However, with rAAV serotype 2 (rAAV2) vectors, liver transduction is confined to only a small portion of hepatocytes even after administration of extremely high vector doses. In order to investigate whether rAAV vectors of other serotypes exhibit similar restricted liver transduction, we performed a dose-response study by injecting mice with β-galactosidase-expressing rAAV1 and rAAV8 vectors via the portal vein. The rAAV1 vector showed a blunted dose-response similar to that of rAAV2 at high doses, while the rAAV8 vector dose-response remained unchanged at any dose and ultimately could transduce all the hepatocytes at a dose of 7.2 × 1012 vector genomes/mouse without toxicity. This indicates that all hepatocytes have the ability to process incoming single-stranded vector genomes into duplex DNA. A single tail vein injection of the rAAV8 vector was as efficient as portal vein injection at any dose. In addition, intravascular administration of the rAAV8 vector at a high dose transduced all the skeletal muscles throughout the body, including the diaphragm, the entire cardiac muscle, and substantial numbers of cells in the pancreas, smooth muscles, and brain. Thus, rAAV8 is a robust vector for gene transfer to the liver and provides a promising research tool for delivering genes to various target organs. In addition, the rAAV8 vector may offer a potential therapeutic agent for various diseases affecting nonhepatic tissues, but great caution is required for vector spillover and tight control of tissue-specific gene expression.


The Journal of Neuroscience | 2009

Nurr1 Is Required for Maintenance of Maturing and Adult Midbrain Dopamine Neurons

Banafsheh Kadkhodaei; Takehito Ito; Eliza Joodmardi; Bengt Mattsson; Claude Rouillard; Manolo Carta; Shin-ichi Muramatsu; Chiho Sumi-Ichinose; Takahide Nomura; Daniel Metzger; Pierre Chambon; Eva Lindqvist; Nils-Goeran Larsson; Lars Olson; Anders Björklund; Hiroshi Ichinose; Thomas Perlmann

Transcription factors involved in the specification and differentiation of neurons often continue to be expressed in the adult brain, but remarkably little is known about their late functions. Nurr1, one such transcription factor, is essential for early differentiation of midbrain dopamine (mDA) neurons but continues to be expressed into adulthood. In Parkinsons disease, Nurr1 expression is diminished and mutations in the Nurr1 gene have been identified in rare cases of disease; however, the significance of these observations remains unclear. Here, a mouse strain for conditional targeting of the Nurr1 gene was generated, and Nurr1 was ablated either at late stages of mDA neuron development by crossing with mice carrying Cre under control of the dopamine transporter locus or in the adult brain by transduction of adeno-associated virus Cre-encoding vectors. Nurr1 deficiency in maturing mDA neurons resulted in rapid loss of striatal DA, loss of mDA neuron markers, and neuron degeneration. In contrast, a more slowly progressing loss of striatal DA and mDA neuron markers was observed after ablation in the adult brain. As in Parkinsons disease, neurons of the substantia nigra compacta were more vulnerable than cells in the ventral tegmental area when Nurr1 was ablated at late embryogenesis. The results show that developmental pathways play key roles for the maintenance of terminally differentiated neurons and suggest that disrupted function of Nurr1 and other developmental transcription factors may contribute to neurodegenerative disease.


The Journal of Neuroscience | 2004

Presynaptic Localization of Neprilysin Contributes to Efficient Clearance of Amyloid-β Peptide in Mouse Brain

Nobuhisa Iwata; Hiroaki Mizukami; Keiro Shirotani; Yoshie Takaki; Shin-ichi Muramatsu; Bao Lu; Norma P. Gerard; Craig Gerard; Keiya Ozawa; Takaomi C. Saido

A local increase in amyloid-β peptide (Aβ) is closely associated with synaptic dysfunction in the brain in Alzheimers disease. Here, we report on the catabolic mechanism of Aβ at the presynaptic sites. Neprilysin, an Aβ-degrading enzyme, expressed by recombinant adeno-associated viral vector-mediated gene transfer, was axonally transported to presynaptic sites through afferent projections of neuronal circuits. This gene transfer abolished the increase in Aβ levels in the hippocampal formations of neprilysin-deficient mice and also reduced the increase in young mutant amyloid precursor protein transgenic mice. In the latter case, Aβ levels in the hippocampal formation contralateral to the vector-injected side were also significantly reduced as a result of transport of neprilysin from the ipsilateral side, and in both sides soluble Aβ was degraded more efficiently than insoluble Aβ. Furthermore, amyloid deposition in aged mutant amyloid precursor protein transgenic mice was remarkably decelerated. Thus, presynaptic neprilysin has been demonstrated to degrade Aβ efficiently and to retard development of amyloid pathology.


Human Gene Therapy | 2000

Triple Transduction with Adeno-Associated Virus Vectors Expressing Tyrosine Hydroxylase, Aromatic-L-Amino-Acid Decarboxylase, and GTP Cyclohydrolase I for Gene Therapy of Parkinson's Disease

Yang Shen; Shin-ichi Muramatsu; Kunihiko Ikeguchi; Ken-ichi Fujimoto; Dongsheng Fan; Matsuo Ogawa; Hiroaki Mizukami; Masashi Urabe; Akihiro Kume; Ikuko Nagatsu; Fumi Urano; Takahiro Suzuki; Hiroshi Ichinose; Toshiharu Nagatsu; John Monahan; Imaharu Nakano; Keiya Ozawa

Parkinsons disease (PD), a neurological disease suited to gene therapy, is biochemically characterized by a severe decrease in the dopamine content of the striatum. One current strategy for gene therapy of PD involves local production of dopamine in the striatum achieved by inducing the expression of enzymes involved in the biosynthetic pathway for dopamine. We previously showed that the coexpression of tyrosine hydroxylase (TH) and aromatic-L-amino-acid decarboxylase (AADC), using two separate adeno-associated virus (AAV) vectors, resulted in more effective dopamine production and more remarkable behavioral recovery in 6-hydroxydopamine-lesioned parkinsonian rats, compared with the expression of TH alone. Not only levels of TH and AADC but also levels of tetrahydrobiopterin (BH4), a cofactor of TH, and GTP cyclohydrolase I (GCH), a rate-limiting enzymes for BH4 biosynthesis, are reduced in parkinsonian striatum. In the present study, we investigated whether transduction with separate AAV vectors expressing TH, AADC, and GCH was effective for gene therapy of PD. In vitro experiments showed that triple transduction with AAV-TH, AAV-AADC, and AAV-GCH resulted in greater dopamine production than double transduction with AAV-TH and AAV-AADC in 293 cells. Furthermore, triple transduction enhanced BH4 and dopamine production in denervated striatum of parkinsonian rats and improved the rotational behavior of the rats more efficiently than did double transduction. Behavioral recovery persisted for at least 12 months after stereotaxic intrastriatal injection. These results suggest that GCH, in addition to TH and AADC, is important for effective gene therapy of PD.


Molecular Therapy | 2010

A Phase I Study of Aromatic l-Amino Acid Decarboxylase Gene Therapy for Parkinson's Disease

Shin-ichi Muramatsu; Ken-ichi Fujimoto; Seiya Kato; Hiroaki Mizukami; Sayaka Asari; Kunihiko Ikeguchi; Tadataka Kawakami; Masashi Urabe; Akihiro Kume; Toshihiko Sato; Eiju Watanabe; Keiya Ozawa; Imaharu Nakano

Gene transfer of dopamine-synthesizing enzymes into the striatal neurons has led to behavioral recovery in animal models of Parkinsons disease (PD). We evaluated the safety, tolerability, and potential efficacy of adeno-associated virus (AAV) vector-mediated gene delivery of aromatic L-amino acid decarboxylase (AADC) into the putamen of PD patients. Six PD patients were evaluated at baseline and at 6 months, using multiple measures, including the Unified Parkinsons Disease Rating Scale (UPDRS), motor state diaries, and positron emission tomography (PET) with 6-[(18)F]fluoro-L-m-tyrosine (FMT), a tracer for AADC. The short-duration response to levodopa was measured in three patients. The procedure was well tolerated. Six months after surgery, motor functions in the OFF-medication state improved an average of 46% based on the UPDRS scores, without apparent changes in the short-duration response to levodopa. PET revealed a 56% increase in FMT activity, which persisted up to 96 weeks. Our findings provide class IV evidence regarding the safety and efficacy of AADC gene therapy and warrant further evaluation in a randomized, controlled, phase 2 setting.Gene transfer of dopamine-synthesizing enzymes into the striatal neurons has led to behavioral recovery in animal models of Parkinsons disease (PD). We evaluated the safety, tolerability, and potential efficacy of adeno-associated virus (AAV) vector-mediated gene delivery of aromatic L-amino acid decarboxylase (AADC) into the putamen of PD patients. Six PD patients were evaluated at baseline and at 6 months, using multiple measures, including the Unified Parkinsons Disease Rating Scale (UPDRS), motor state diaries, and positron emission tomography (PET) with 6-[18F]fluoro-L-m-tyrosine (FMT), a tracer for AADC. The short-duration response to levodopa was measured in three patients. The procedure was well tolerated. Six months after surgery, motor functions in the OFF-medication state improved an average of 46% based on the UPDRS scores, without apparent changes in the short-duration response to levodopa. PET revealed a 56% increase in FMT activity, which persisted up to 96 weeks. Our findings provide class IV evidence regarding the safety and efficacy of AADC gene therapy and warrant further evaluation in a randomized, controlled, phase 2 setting.


Gene Therapy | 2002

Delayed delivery of AAV-GDNF prevents nigral neurodegeneration and promotes functional recovery in a rat model of Parkinson's disease

Lijun Wang; Shin-ichi Muramatsu; Yan-Yan Lu; Kunihiko Ikeguchi; Kengo Fujimoto; Takashi Okada; Hiroaki Mizukami; Yutaka Hanazono; Akihiro Kume; Fumi Urano; Hiroshi Ichinose; Toshiharu Nagatsu; Imaharu Nakano; Keiya Ozawa

Glial cell line-derived neurotrophic factor (GDNF) is a strong candidate agent in the neuroprotective treatment of Parkinsons disease (PD). We investigated whether adeno-associated viral (AAV) vector-mediated delivery of a GDNF gene in a delayed manner could prevent progressive degeneration of dopaminergic (DA) neurons, while preserving a functional nigrostriatal pathway. Four weeks after a unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA), rats received injection of AAV vectors expressing GDNF tagged with FLAG peptide (AAV-GDNFflag) or β-galactosidase (AAV-LacZ) into the lesioned striatum. Immunostaining for FLAG demonstrated retrograde transport of GDNFflag to the substantia nigra (SN). The density of tyrosine hydroxylase (TH)-positive DA fibers in the striatum and the number of TH-positive or cholera toxin subunit B (CTB, neuronal tracer)-labeled neurons in the SN were significantly greater in the AAV-GDNFflag group than in the AAV-LacZ group. Dopamine levels and those of its metabolites in the striatum were remarkably higher in the AAV-GDNFflag group compared with the control group. Consistent with anatomical and biochemical changes, significant behavioral recovery was observed from 4–20 weeks following AAV-GDNFflag injection. These data indicate that a delayed delivery of GDNF gene using AAV vector is efficacious even 4 weeks after the onset of progressive degeneration in a rat model of PD.


Journal of Biological Chemistry | 2009

Isolation and characterization of patient-derived, toxic, high mass Amyloid β-protein (Aβ) assembly from Alzheimer disease brains

Akihiko Noguchi; Satoko Matsumura; Mari Dezawa; Mari Tada; Masako Yanazawa; Akane Ito; Manami Akioka; Satoru Kikuchi; Michio Sato; Shouji Ideno; Munehiro Noda; Atsushi Fukunari; Shin-ichi Muramatsu; Yutaka Itokazu; Kazuki Sato; Hitoshi Takahashi; David B. Teplow; Yo-ichi Nabeshima; Akiyoshi Kakita; Kazutomo Imahori; Minako Hoshi

Amyloid β-protein (Aβ) assemblies are thought to play primary roles in Alzheimer disease (AD). They are considered to acquire surface tertiary structures, not present in physiologic monomers, that are responsible for exerting toxicity, probably through abnormal interactions with their target(s). Therefore, Aβ assemblies having distinct surface tertiary structures should cause neurotoxicity through distinct mechanisms. Aiming to clarify the molecular basis of neuronal loss, which is a central phenotype in neurodegenerative diseases such as AD, we report here the selective immunoisolation of neurotoxic 10–15-nm spherical Aβ assemblies termed native amylospheroids (native ASPDs) from AD and dementia with Lewy bodies brains, using ASPD tertiary structure-dependent antibodies. In AD patients, the amount of native ASPDs was correlated with the pathologic severity of disease. Native ASPDs are anti-pan oligomer A11 antibody-negative, high mass (>100 kDa) assemblies that induce degeneration particularly of mature neurons, including those of human origin, in vitro. Importantly, their immunospecificity strongly suggests that native ASPDs have a distinct surface tertiary structure from other reported assemblies such as dimers, Aβ-derived diffusible ligands, and A11-positive assemblies. Only ASPD tertiary structure-dependent antibodies could block ASPD-induced neurodegeneration. ASPDs bind presynaptic target(s) on mature neurons and have a mode of toxicity different from those of other assemblies, which have been reported to exert their toxicity through binding postsynaptic targets and probably perturbing glutamatergic synaptic transmission. Thus, our findings indicate that native ASPDs with a distinct toxic surface induce neuronal loss through a different mechanism from other Aβ assemblies.


Neurobiology of Aging | 2008

Selective loss of nigral dopamine neurons induced by overexpression of truncated human α-synuclein in mice

Masaki Wakamatsu; Aiko Ishii; Shingo Iwata; Junko Sakagami; Yuriko Ukai; Mieko Ono; Daiji Kanbe; Shin-ichi Muramatsu; Kazuto Kobayashi; Takeshi Iwatsubo; Makoto Yoshimoto

Parkinsons disease is characterized by loss of nigral dopaminergic neurons and presence of Lewy bodies, whose major component is alpha-synuclein. In the present study, we generated transgenic mice termed Syn130m that express truncated human alpha-synuclein (amino acid residue number: 1-130) in dopaminergic neurons. Notably, dopaminergic neurons were selectively diminished in the substantia nigra pars compacta of Syn130m, while transgenic mice that expressed comparable amount of full-length human alpha-synuclein did not develop such pathology. Therefore, the truncation of human alpha-synuclein seems to be primarily responsible for the loss of nigral dopaminergic neurons. The nigral pathology resulted in impairment of axon terminals in the striatum and concomitant decrease in striatal dopamine content. Behaviorally, spontaneous locomotor activities of Syn130m were reduced, but the abnormality was ameliorated by treatment with L-DOPA. The loss of nigral dopaminergic neurons was not progressive and seemed to occur during embryogenesis along with the onset of expression of the transgene. Our results indicate that truncated human alpha-synuclein is deleterious to the development and/or survival of nigral dopaminergic neurons.


Nature Medicine | 2012

Viral delivery of miR-196a ameliorates the SBMA phenotype via the silencing of CELF2

Yu Miyazaki; Hiroaki Adachi; Masahisa Katsuno; Makoto Minamiyama; Yue-Mei Jiang; Zhe Huang; Hideki Doi; Shinjiro Matsumoto; Naohide Kondo; Madoka Iida; Genki Tohnai; Fumiaki Tanaka; Shin-ichi Muramatsu; Gen Sobue

Spinal and bulbar muscular atrophy (SBMA) is an inherited neurodegenerative disorder caused by the expansion of the polyglutamine (polyQ) tract of the androgen receptor (AR-polyQ). Characteristics of SBMA include proximal muscular atrophy, weakness, contraction fasciculation and bulbar involvement. MicroRNAs (miRNAs) are a diverse class of highly conserved small RNA molecules that function as crucial regulators of gene expression in animals and plants. Recent functional studies have shown the potent activity of specific miRNAs as disease modifiers both in vitro and in vivo. Thus, potential therapeutic approaches that target the miRNA processing pathway have recently attracted attention. Here we describe a novel therapeutic approach using the adeno-associated virus (AAV) vector–mediated delivery of a specific miRNA for SBMA. We found that miR-196a enhanced the decay of the AR mRNA by silencing CUGBP, Elav-like family member 2 (CELF2). CELF2 directly acted on AR mRNA and enhanced the stability of AR mRNA. Furthermore, we found that the early intervention of miR-196a delivered by an AAV vector ameliorated the SBMA phenotypes in a mouse model. Our results establish the proof of principle that disease-specific miRNA delivery could be useful in neurodegenerative diseases.


Journal of General Virology | 2000

Adeno-associated virus (AAV)-3-based vectors transduce haematopoietic cells not susceptible to transduction with AAV-2-based vectors

Atsushi Handa; Shin-ichi Muramatsu; Jianming Qiu; Hiroaki Mizukami; Kevin E. Brown

Although adeno-associated virus (AAV)-2 has a broad tissue-host range and can transduce a wide variety of tissue types, some cells, such as erythro-megakaryoblastoid cells, are non-permissive and appear to lack the AAV-2 receptor. However, limited studies have been reported with the related dependovirus AAV-3. We have previously cloned this virus, characterized its genome and produced an infectious clone. In this study, the gene for green fluorescent protein (GFP) was inserted into AAV-2- and AAV-3-based plasmids and recombinant viruses were produced. These viruses were then used to transduce haematopoietic cells and the transduction efficiencies were compared. In contrast to recombinant (r) AAV-2, rAAV-3 successfully transduced erythroid and megakaryoblastoid cells, although rAAV-2 was superior in transduction of lymphocyte-derived cell lines. Recently, it was reported that heparan sulphate can act as a receptor of AAV-2. The infectivity of rAAV-2 and rAAV-3 was tested with mutant cell lines of Chinese hamster ovary cells that were defective for heparin or heparan sulphate expression on the cell surface. There was no correlation between the ability of rAAV-2 or rAAV-3 to infect cells and the cell surface expression of heparan sulphate and, although heparin blocked both rAAV-2 and rAAV-3 transduction, the ID(50) of rAAV-3 was higher than that of rAAV-2. In addition, virus-binding overlay assays indicated that AAV-2 and AAV-3 bound different membrane proteins. These results suggest not only that there are different cellular receptors for AAV-2 and AAV-3, but that rAAV-3 vectors may be preferred for transduction of some haematopoietic cell types.

Collaboration


Dive into the Shin-ichi Muramatsu's collaboration.

Top Co-Authors

Avatar

Keiya Ozawa

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akihiro Kume

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Ichinose

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge