Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shin'ichi Takeda is active.

Publication


Featured researches published by Shin'ichi Takeda.


Nature Cell Biology | 2010

Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle

Akiyoshi Uezumi; So-ichiro Fukada; Naoki Yamamoto; Shin'ichi Takeda; Kunihiro Tsuchida

Ectopic fat deposition in skeletal muscle is closely associated with several disorders, however, the origin of these adipocytes is not clear, nor is the mechanism of their formation. Satellite cells function as adult muscle stem cells but are proposed to possess multipotency. Here, we prospectively identify PDGFRα+ mesenchymal progenitors as being distinct from satellite cells and located in the muscle interstitium. We show that, of the muscle-derived cell populations, only PDGFRα+ cells show efficient adipogenic differentiation both in vitro and in vivo. Reciprocal transplantations between regenerating and degenerating muscles, and co-culture experiments revealed that adipogenesis of PDGFRα+ cells is strongly inhibited by the presence of satellite cell-derived myofibres. These results suggest that PDGFRα+ mesenchymal progenitors are the major contributor to ectopic fat cell formation in skeletal muscle, and emphasize that interaction between muscle cells and PDGFRα+ mesenchymal progenitors, not the fate decision of satellite cells, has a considerable impact on muscle homeostasis.


Annals of Neurology | 2009

Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs.

Toshifumi Yokota; Qilong Lu; Terence A. Partridge; Masanori Kobayashi; Akinori Nakamura; Shin'ichi Takeda; Eric P. Hoffman

Duchenne muscular dystrophy (DMD) is caused by the inability to produce dystrophin protein at the myofiber membrane. A method to rescue dystrophin production by antisense oligonucleotides, termed exon‐skipping, has been reported for the mdx mouse and in four DMD patients by local intramuscular injection. We sought to test efficacy and toxicity of intravenous oligonucleotide (morpholino)‐induced exon skipping in the DMD dog model.


Journal of Cell Biology | 2007

Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo

Tomomi Oyama; Toshio Nagai; Hiroshi Wada; Atsuhiko T. Naito; Katsuhisa Matsuura; Koji Iwanaga; Toshinao Takahashi; Motohiro Goto; Yoko Mikami; Noritaka Yasuda; Hiroshi Akazawa; Akiyoshi Uezumi; Shin'ichi Takeda; Issei Komuro

Side population (SP) cells, which can be identified by their ability to exclude Hoechst 33342 dye, are one of the candidates for somatic stem cells. Although bone marrow SP cells are known to be long-term repopulating hematopoietic stem cells, there is little information about the characteristics of cardiac SP cells (CSPs). When cultured CSPs from neonatal rat hearts were treated with oxytocin or trichostatin A, some CSPs expressed cardiac-specific genes and proteins and showed spontaneous beating. When green fluorescent protein–positive CSPs were intravenously infused into adult rats, many more (∼12-fold) CSPs were migrated and homed in injured heart than in normal heart. CSPs in injured heart differentiated into cardiomyocytes, endothelial cells, or smooth muscle cells (4.4%, 6.7%, and 29% of total CSP-derived cells, respectively). These results suggest that CSPs are intrinsic cardiac stem cells and involved in the regeneration of diseased hearts.


Stem Cells | 2007

Molecular Signature of Quiescent Satellite Cells in Adult Skeletal Muscle

So-ichiro Fukada; Akiyoshi Uezumi; Madoka Ikemoto; Satoru Masuda; Masashi Segawa; Naoki Tanimura; Hiroshi Yamamoto; Yuko Miyagoe-Suzuki; Shin'ichi Takeda

Skeletal muscle satellite cells play key roles in postnatal muscle growth and regeneration. To study molecular regulation of satellite cells, we directly prepared satellite cells from 8‐ to 12‐week‐old C57BL/6 mice and performed genome‐wide gene expression analysis. Compared with activated/cycling satellite cells, 507 genes were highly upregulated in quiescent satellite cells. These included negative regulators of cell cycle and myogenic inhibitors. Gene set enrichment analysis revealed that quiescent satellite cells preferentially express the genes involved in cell‐cell adhesion, regulation of cell growth, formation of extracellular matrix, copper and iron homeostasis, and lipid transportation. Furthermore, reverse transcription‐polymerase chain reaction on differentially expressed genes confirmed that calcitonin receptor (CTR) was exclusively expressed in dormant satellite cells but not in activated satellite cells. In addition, CTR mRNA is hardly detected in nonmyogenic cells. Therefore, we next examined the expression of CTR in vivo. CTR was specifically expressed on quiescent satellite cells, but the expression was not found on activated/proliferating satellite cells during muscle regeneration. CTR‐positive cells reappeared at the rim of regenerating myofibers in later stages of muscle regeneration. Calcitonin stimulation delayed the activation of quiescent satellite cells. Our data provide roles of CTR in quiescent satellite cells and a solid scaffold to further dissect molecular regulation of satellite cells.


FEBS Letters | 1997

Laminin α2 chain-null mutant mice by targeted disruption of the Lama2 gene: a new model of merosin (laminin 2)-deficient congenital muscular dystrophy

Yuko Miyagoe; Kazunori Hanaoka; Ikuya Nonaka; Michiko Hayasaka; Yoko Nabeshima; Kiichi Arahata; Yo-ichi Nabeshima; Shin'ichi Takeda

Using the gene targeting technique, we have generated a new mouse model of congenital muscular dystrophy (CMD), a null mutant for the laminin α2 chain. These homozygous mice, designated dy3K/dy3K , are characterized by growth retardation and severe muscular dystrophic symptoms and die by 5 weeks of age. Light microscopy revealed that muscle fiber degeneration in these mice begins no later than postnatal day 9. In degenerating muscles, considerable amounts of TUNEL positive nuclei were detected as well as DNA laddering, suggesting increased apoptotic cell death was involved in the process of muscle fiber degeneration.


Journal of Cell Science | 2011

Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle

Akiyoshi Uezumi; Takahito Ito; Daisuke Morikawa; Natsuko Shimizu; Tomohiro Yoneda; Masashi Segawa; Masahiko Yamaguchi; Ryo Ogawa; Miroslav M. Matev; Yuko Miyagoe-Suzuki; Shin'ichi Takeda; Kazutake Tsujikawa; Kunihiro Tsuchida; Hiroshi Yamamoto; So-ichiro Fukada

Accumulation of adipocytes and collagen type-I-producing cells (fibrosis) is observed in muscular dystrophies. The origin of these cells had been largely unknown, but recently we identified mesenchymal progenitors positive for platelet-derived growth factor receptor alpha (PDGFRα) as the origin of adipocytes in skeletal muscle. However, the origin of muscle fibrosis remains largely unknown. In this study, clonal analyses show that PDGFRα+ cells also differentiate into collagen type-I-producing cells. In fact, PDGFRα+ cells accumulated in fibrotic areas of the diaphragm in the mdx mouse, a model of Duchenne muscular dystrophy. Furthermore, mRNA of fibrosis markers was expressed exclusively in the PDGFRα+ cell fraction in the mdx diaphragm. Importantly, TGF-β isoforms, known as potent profibrotic cytokines, induced expression of markers of fibrosis in PDGFRα+ cells but not in myogenic cells. Transplantation studies revealed that fibrogenic PDGFRα+ cells mainly derived from pre-existing PDGFRα+ cells and that the contribution of PDGFRα− cells and circulating cells was limited. These results indicate that mesenchymal progenitors are the main origin of not only fat accumulation but also fibrosis in skeletal muscle.


The FASEB Journal | 2004

Skeletal muscle gene expression in space-flown rats

Takeshi Nikawa; Kazumi Ishidoh; Katsuya Hirasaka; Ibuki Ishihara; Madoka Ikemoto; Mihoko Kano; Eiki Kominami; Ikuya Nonaka; Takayuki Ogawa; Gregory R. Adams; Kenneth M. Baldwin; Natsuo Yasui; Kyoichi Kishi; Shin'ichi Takeda

Skeletal muscles are vulnerable to marked atrophy under microgravity. This phenomenon is due to the transcriptional alteration of skeletal muscle cells to weightlessness. To further investigate this issue at a subcellular level, we examined the expression of ~26,000 gastrocnemius muscle genes in space‐flown rats by DNA microarray analysis. Comparison of the changes in gene expression among spaceflight, tail‐suspended, and denervated rats revealed that such changes were unique after spaceflight and not just an extension of simulated weightlessness. The microarray data showed two spaceflight‐specific gene expression patterns: 1) imbalanced expression of mitochondrial genes with disturbed expression of cytoskeletal molecules, including putative mitochondria‐anchoring proteins, A‐kinase anchoring protein, and cytoplasmic dynein, and 2) up‐regulated expression of ubiquitin ligase genes, MuRF‐1, Cbl‐b, and Siah‐1A, which are rate‐limiting enzymes of muscle protein degradation. Distorted expression of cytoskeletal genes during spaceflight resulted in dislocation of the mitochondria in the cell. Several oxidative stress‐inducible genes were highly expressed in the muscle of spaceflight rats. We postulate that mitochondrial dislocation during spaceflight has deleterious effects on muscle fibers, leading to atrophy in the form of insufficient energy provision for construction and leakage of reactive oxygen species from the mitochondria.


The FASEB Journal | 2001

Space shuttle flight (STS-90) enhances degradation of rat myosin heavy chain in association with activation of ubiquitin–proteasome pathway

Madoka Ikemoto; Takeshi Nikawa; Shin'ichi Takeda; Chiho Watanabe; Takako Kitano; Kenneth M. Baldwin; Ryutaro Izumi; Ikuya Nonaka; Takae Towatari; Shigetada Teshima; Kazuhito Rokutan; Kyoichi Kishi

To elucidate the mechanisms of microgravity‐induced muscle atrophy, we focused on fast‐type myosin heavy chain (MHC) degradation and expression of proteases in atrophied gastrocnemius muscles of neonatal rats exposed to 16‐d spaceflight (STS‐90). The spaceflight stimulated ubiquitination of proteins, including a MHC molecule, and accumulation of MHC degradation fragments in the muscles. Semiquantitative reverse transcriptase‐polymerase chain reaction revealed that the spaceflight significantly increased mRNA levels of cathepsin L, proteasome components (RC2 and RC9), polyubiquitin, and ubiquitin‐conjugating enzyme in the muscles, compared with those of ground control rats. The levels of μ‐calpain, m‐calpain, cathepsin B, and cathepsin H mRNAs were not changed by the spaceflight. We also found that tail‐suspension of rats for 10 d or longer caused the ubiquitination and degradation of MHC in gastrocnemius muscle, as was observed in the spaceflight rats. In the muscle of suspended rats, these changes were closely associated with activation of proteasome and up‐regulation of expression of mRNA for the proteasome components and polyubiquitin. Administration of a cysteine protease inhibitor, E‐64, to the suspended rats did not prevent the MHC degradation. Our results suggest that spaceflight induces the degradation of muscle contractile proteins, including MHC, possibly through a ubiquitin‐dependent proteolytic pathway.


The EMBO Journal | 1991

The oct3 gene, a gene for an embryonic transcription factor, is controlled by a retinoic acid repressible enhancer.

Hitoshi Okazawa; Koji Okamoto; Ishino F; Ishino-Kaneko T; Shin'ichi Takeda; Toyoda Y; Masami Muramatsu; Hiroshi Hamada

Oct3 is an embryonic octamer‐binding transcription factor, whose expression is rapidly repressed by retinoic acid (RA). In this report, we have determined the transcriptional control region of the oct3 gene and studied the mechanism of the RA‐mediated repression. The chromosomal oct3 gene consists of five exons. Three subdomains of the POU region and transactivating domain are located in separate exons. Transcription initiates at multiple sites in the GC‐rich region lacking a typical TATA box. The upstream 2 kb region can confer the cell type‐specific expression and RA‐mediated repression. Analysis of the upstream region by deletion mutagenesis locates a cis element (RARE1) which functions as a stem cell‐specific, yet RA‐repressible, enhancer. Footprint and gel‐retardation assays show that RARE1 is composed of two domains, each of which is recognized by distinct factors. Microinjection of oct3‐lacZ constructs into fertilized eggs indicates that RARE1 can function in early embryos. We suggest that RARE1 is a critical cis element for oct3 gene expression in embryonic stem cells and for the RA‐mediated repression.


Circulation Research | 2006

Critical Roles of Muscle-Secreted Angiogenic Factors in Therapeutic Neovascularization

Kaoru Tateno; Tohru Minamino; Haruhiro Toko; Hiroshi Akazawa; Naomi Shimizu; Shin'ichi Takeda; Takeshige Kunieda; Hideyuki Miyauchi; Tomomi Oyama; Katsuhisa Matsuura; Junichiro Nishi; Yoshio Kobayashi; Toshio Nagai; Yoichi Kuwabara; Yoichiro Iwakura; Fumio Nomura; Yasushi Saito; Issei Komuro

The discovery of bone marrow–derived endothelial progenitors in the peripheral blood has promoted intensive studies on the potential of cell therapy for various human diseases. Accumulating evidence has suggested that implantation of bone marrow mononuclear cells effectively promotes neovascularization in ischemic tissues. It has also been reported that the implanted cells are incorporated not only into the newly formed vessels but also secrete angiogenic factors. However, the mechanism by which cell therapy improves tissue ischemia remains obscure. We enrolled 29 “no-option” patients with critical limb ischemia and treated ischemic limbs by implantation of peripheral mononuclear cells. Cell therapy using peripheral mononuclear cells was very effective for the treatment of limb ischemia, and its efficacy was associated with increases in the plasma levels of angiogenic factors, in particular interleukin-1&bgr; (IL-1&bgr;). We then examined an experimental model of limb ischemia using IL-1&bgr;–deficient mice. Implantation of IL-1&bgr;–deficient mononuclear cells improved tissue ischemia as efficiently as that of wild-type cells. Both wild-type and IL-1&bgr;–deficient mononuclear cells increased expression of IL-1&bgr; and thus induced angiogenic factors in muscle cells of ischemic limbs to a similar extent. In contrast, inability of muscle cells to secrete IL-1&bgr; markedly reduces induction of angiogenic factors and impairs neovascularization by cell implantation. Implanted cells do not secret angiogenic factors sufficient for neovascularization but, instead, stimulate muscle cells to produce angiogenic factors, thereby promoting neovascularization in ischemic tissues. Further studies will allow us to develop more effective treatments for ischemic vascular disease.

Collaboration


Dive into the Shin'ichi Takeda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge