Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shin Toriumi is active.

Publication


Featured researches published by Shin Toriumi.


The Astrophysical Journal | 2012

MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS

Kanya Kusano; Yumi Bamba; Tetsuya Yamamoto; Y. Iida; Shin Toriumi; Ayumi Asai

Solar flares and coronal mass ejections, the most catastrophic eruptions in our solar system, have been known to affect terrestrial environments and infrastructure. However, because their triggering mechanism is still not sufficiently understood, our capacity to predict the occurrence of solar eruptions and to forecast space weather is substantially hindered. Even though various models have been proposed to determine the onset of solar eruptions, the types of magnetic structures capable of triggering these eruptions are still unclear. In this study, we solved this problem by systematically surveying the nonlinear dynamics caused by a wide variety of magnetic structures in terms of three-dimensional magnetohydrodynamic simulations. As a result, we determined that two different types of small magnetic structures favor the onset of solar eruptions. These structures, which should appear near the magnetic polarity inversion line (PIL), include magnetic fluxes reversed to the potential component or the nonpotential component of major field on the PIL. In addition, we analyzed two large flares, the X-class flare on 2006 December 13 and the M-class flare on 2011 February 13, using imaging data provided by the Hinode satellite, and we demonstrated that they conform to the simulation predictions. These results suggest that forecasting of solar eruptions is possible with sophisticated observation of a solar magnetic field, although the lead time must be limited by the timescale of changes in the small magnetic structures.


The Astrophysical Journal | 2015

LIGHT BRIDGE IN A DEVELOPING ACTIVE REGION. I. OBSERVATION OF LIGHT BRIDGE AND ITS DYNAMIC ACTIVITY PHENOMENA

Shin Toriumi; Yukio Katsukawa; Mark C. M. Cheung

Light bridges, the bright structures that divide the umbra of sunspots and pores into smaller pieces, are known to produce a wide variety of activity events in solar active regions (ARs). It is also known that the light bridges appear in the assembling process of nascent sunspots. The ultimate goal of this series of papers is to reveal the nature of light bridges in developing ARs and the occurrence of activity events associated with the light bridge structures from both observational and numerical approaches. In this first paper, exploiting the observational data obtained by Hinode, the Interface Region Imaging Spectrograph, and the Solar Dynamics Observatory, we investigate the detailed structure of the light bridge in NOAA AR 11974 and its dynamic activity phenomena. As a result, we find that the light bridge has a weak, horizontal magnetic field, which is transported from the interior by a large-scale convective upflow and is surrounded by strong, vertical fields of adjacent pores. In the chromosphere above the bridge, a transient brightening occurs repeatedly and intermittently, followed by a recurrent dark surge ejection into higher altitudes. Our analysis indicates that the brightening is the plasma heating due to magnetic reconnection at lower altitudes, while the dark surge is the cool, dense plasma ejected from the reconnection region. From the observational results, we conclude that the dynamic activity observed in a light bridge structure such as chromospheric brightenings and dark surge ejections are driven by magnetoconvective evolution within the light bridge and its interaction with the surrounding magnetic fields.


The Astrophysical Journal | 2011

Numerical Experiments on the Two-step Emergence of Twisted Magnetic Flux Tubes in the Sun

Shin Toriumi; Takaaki Yokoyama

We present the new results of the two-dimensional numerical experiments on the cross-sectional evolution of a twisted magnetic flux tube rising from the deeper solar convection zone (?20,000 km) to the corona through the surface. The initial depth is 10 times deeper than most of the previous calculations focusing on the flux emergence from the uppermost convection zone. We find that the evolution is illustrated by the following two-step process. The initial tube rises due to its buoyancy, subject to aerodynamic drag due to the external flow. Because of the azimuthal component of the magnetic field, the tube maintains its coherency and does not deform to become a vortex roll pair. When the flux tube approaches the photosphere and expands sufficiently, the plasma on the rising tube accumulates to suppress the tubes emergence. Therefore, the flux decelerates and extends horizontally beneath the surface. This new finding owes to our large-scale simulation, which simultaneously calculates the dynamics within the interior as well as above the surface. As the magnetic pressure gradient increases around the surface, magnetic buoyancy instability is triggered locally and, as a result, the flux rises further into the solar corona. We also find that the deceleration occurs at a higher altitude than assumed in our previous experiment using magnetic flux sheets. By conducting parametric studies, we investigate the conditions for the two-step emergence of the rising flux tube: field strength 1.5 ? 104 G and the twist 5.0 ? 10?4 km?1 at ?20,000 km depth.


The Astrophysical Journal | 2015

LIGHT BRIDGE IN A DEVELOPING ACTIVE REGION. II. NUMERICAL SIMULATION OF FLUX EMERGENCE AND LIGHT BRIDGE FORMATION

Shin Toriumi; Mark C. M. Cheung; Yukio Katsukawa

Light bridges, the bright structure dividing umbrae in sunspot regions, show various activity events. In Paper I, we reported on an analysis of multi-wavelength observations of a light bridge in a developing active region (AR) and concluded that the activity events are caused by magnetic reconnection driven by magnetconvective evolution. The aim of this second paper is to investigate the detailed magnetic and velocity structures and the formation mechanism of light bridges. For this purpose, we analyze numerical simulation data from a radiative magnetohydrodynamics model of an emerging AR. We find that a weakly magnetized plasma upflow in the near-surface layers of the convection zone is entrained between the emerging magnetic bundles that appear as pores at the solar surface. This convective upflow continuously transports horizontal fields to the surface layer and creates a light bridge structure. Due to the magnetic shear between the horizontal fields of the bridge and the vertical fields of the ambient pores, an elongated cusp-shaped current layer is formed above the bridge, which may be favorable for magnetic reconnection. The striking correspondence between the observational results of Paper I and the numerical results of this paper provides a consistent physical picture of light bridges. The dynamic activity phenomena occur as a natural result of the bridge formation and its convective nature, which has much in common with those of umbral dots and penumbral filaments.


Astronomy and Astrophysics | 2012

Large-scale 3D MHD simulation on the solar flux emergence and the small-scale dynamic features in an active region

Shin Toriumi; Takaaki Yokoyama

We have performed a three-dimensional magnetohydrodynamic simulation to study the emergence of a twisted magnetic flux tube from −20000 km of the solar convection zone to the corona through the photosphere and the chromosphere. The middle part of the initial tube is endowed with a density deficit to instigate a buoyant emergence. As the tube approaches the surface, it extends horizontally and makes a flat magnetic structure due to the photosphere ahead of the tube. Further emergence to the corona breaks out via the interchange-mode instability of the photospheric fields, and eventually several magnetic domes build up above the surface. What is new in this three-dimensional experiment is multiple separation events of the vertical magnetic elements are observed in the photospheric magnetogram, and they reflect the interchange instability. Separated elements are found to gather at the edges of the active region. These gathered elements then show shearing motions. These characteristics are highly reminiscent of active region observations. On the basis of the simulation results above, we propose a theoretical picture of the flux emergence and the formation of an active region that explains the observational features, such as multiple separations of faculae and the shearing motion.


The Astrophysical Journal | 2012

DETECTION OF THE HORIZONTAL DIVERGENT FLOW PRIOR TO THE SOLAR FLUX EMERGENCE

Shin Toriumi; Keiji Hayashi; Takaaki Yokoyama

It is widely accepted that solar active regions including sunspots are formed by the emerging magnetic flux from the deep convection zone. In previous numerical simulations, we found that the horizontal divergent flow (HDF) occurs before the flux emergence at the photospheric height. This Paper reports the HDF detection prior to the flux emergence of NOAA AR 11081, which is located away from the disk center. We use SDO/HMI data to study the temporal changes of the Doppler and magnetic patterns from those of the reference quiet Sun. As a result, the HDF appearance is found to come before the flux emergence by about 100 minutes. Also, the horizontal speed of the HDF during this time gap is estimated to be 0.6 to 1.5 km s^-1, up to 2.3 km s^-1. The HDF is caused by the plasma escaping horizontally from the rising magnetic flux. And the interval between the HDF and the flux emergence may reflect the latency during which the magnetic flux beneath the solar surface is waiting for the instability onset to the further emergence. Moreover, SMART Halpha images show that the chromospheric plages appear about 14 min later, located co-spatial with the photospheric pores. This indicates that the plages are caused by plasma flowing down along the magnetic fields that connect the pores at their footpoints. One importance of observing the HDF may be the possibility to predict the sunspot appearances that occur in several hours.


The Astrophysical Journal | 2014

Statistical analysis of the horizontal divergent flow in emerging solar active regions

Shin Toriumi; Keiji Hayashi; Takaaki Yokoyama

Solar active regions (ARs) are thought to be formed by magnetic fields from the convection zone. Our flux emergence simulations revealed that a strong horizontal divergent flow (HDF) of unmagnetized plasma appears at the photosphere before the flux begins to emerge. In our earlier study, we analyzed HMI data for a single AR and confirmed presence of this precursor plasma flow in the actual Sun. In this paper, as an extension of our earlier study, we conducted a statistical analysis of the HDFs to further investigate their characteristics and better determine the properties. From SDO/HMI data, we picked up 23 flux emergence events over a period of 14 months, the total flux of which ranges from 10^{20} to 10^{22} Mx. Out of 23 selected events, 6 clear HDFs were detected by the method we developed in our earlier study, and 7 HDFs detected by visual inspection were added to this statistic analysis. We found that the duration of the HDF is on average 61 minutes and the maximum HDF speed is on average 3.1 km s^{-1}. We also estimated the rising speed of the subsurface magnetic flux to be 0.6-1.4 km s^{-1}. These values are highly consistent with our previous one-event analysis as well as our simulation results. The observation results lead us to the conclusion that the HDF is rather a common feature in the earliest phase of AR emergence. Moreover, our HDF analysis has capability of determining the subsurface properties of emerging fields that cannot be directly measured.


Publications of the Astronomical Society of Japan | 2011

Dependence of the Magnetic Energy of Solar Active Regions on the Twist Intensity of the Initial Flux Tubes

Shin Toriumi; Takehiro Miyagoshi; Takaaki Yokoyama; Hiroaki Isobe; Kazunari Shibata

We present a series of numerical experiments that model the evolution of magnetic flux tubes with a different amount of initial twist. As a result of calculations, tightly twisted tubes reveal a rapid two-step emergence to the atmosphere with a slight slowdown at the surface, while weakly twisted tubes show a slow two-step emergence waiting longer the secondary instability to be triggered. This picture of the two-step emergence is highly consistent with recent observations. These tubes show multiple magnetic domes above the surface, indicating that the secondary emergence is caused by interchange mode of magnetic buoyancy instability. As for the weakest twist case, the tube exhibits an elongated photospheric structure and never rises into the corona. The formation of the photospheric structure is due to inward magnetic tension force of the azimuthal field component of the rising flux tube (i.e., tubes twist). When the twist is weak, azimuthal field cannot hold the tubes coherency, and the tube extends laterally at the subadiabatic surface. In addition, we newly find that the total magnetic energy measured above the surface depends on the initial twist. Strong twist tubes follow the initial relation between the twist and the magnetic energy, while weak twist tubes deviates from this relation, because these tubes store their magnetic energy in the photospheric structures.


Astronomy and Astrophysics | 2013

Three-dimensional magnetohydrodynamic simulation of the solar magnetic flux emergence - Parametric study on the horizontal divergent flow

Shin Toriumi; Takaaki Yokoyama

Solar active regions are formed through the emergence of magnetic flux from the deeper convection zone. Recent satellite observations have shown that a horizontal divergent flow (HDF) stretches out over the solar surface just before the magnetic flux appearance. The aims of this study are to investigate the driver of the HDF and to see the dependency of the HDF on the parameters of the magnetic flux in the convection zone. We conduct three-dimensional magnetohydrodynamic (3D MHD) numerical simulations of the magnetic flux emergence and vary the parameters in the initial conditions. An analytical approach is also taken to explain the dependency. The horizontal gas pressure gradient is found to be the main driver of the HDF. The maximum HDF speed shows positive correlations with the field strength and twist intensity. The HDF duration has a weak relation with the twist, while it shows negative dependency on the field strength only in the case of the stronger field regime. Parametric dependencies analyzed in this study may allow us to probe the structure of the subsurface magnetic flux by observing properties of the HDF.


The Astrophysical Journal | 2017

Various Local Heating Events in the Earliest Phase of Flux Emergence

Shin Toriumi; Yukio Katsukawa; Mark C. M. Cheung

Emerging flux regions (EFRs) are known to exhibit various sporadic local heating events in the lower atmosphere. To investigate the characteristics of these events, especially to link the photospheric magnetic fields and atmospheric dynamics, we analyze Hinode, IRIS, and SDO data of a new EFR in NOAA AR 12401. Out of 151 bright points (BPs) identified in Hinode/SOT Ca images, 29 are overlapped by an SOT/SP scan. Seven BPs in the EFR center possess mixed-polarity magnetic backgrounds in the photosphere. Their IRIS UV spectra (e.g., Si IV 1402.8 A) are strongly enhanced and red- or blue-shifted with tails reaching +/- 150 km/s, which is highly suggestive of bi-directional jets, and each brightening lasts for 10 - 15 minutes leaving flare-like light curves. Most of this group show bald patches, the U-shaped photospheric magnetic loops. Another 10 BPs are found in unipolar regions at the EFR edges. They are generally weaker in UV intensities and exhibit systematic redshifts with Doppler speeds up to 40 km/s, which could exceed the local sound speed in the transition region. Both types of BPs show signs of strong temperature increase in the low chromosphere. These observational results support the physical picture that heating events in the EFR center are due to magnetic reconnection within cancelling undular fields like Ellerman bombs, while the peripheral heating events are due to shocks or strong compressions caused by fast downflows along the overlying arch filament system.

Collaboration


Dive into the Shin Toriumi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hirohisa Hara

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge