Shinghung Mak
Hong Kong Polytechnic University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shinghung Mak.
Journal of Ethnopharmacology | 2011
Shengquan Hu; Renwen Han; Shinghung Mak; Yifan Han
ETHNOPHARMACOLOGICAL RELEVANCE The present study investigates the protective effects of water extract of ginseng (Panax ginseng C.A. Meyer) against 1-methyl-4-phenylpyridinium ion (MPP(+))-induced cytotoxicity in SH-SY5Y human neuroblastoma cells and explores the underlying mechanisms. The approach may be used for screening therapeutic agents for degenerative disorders such as Parkinsons disease. MATERIALS AND METHODS SH-SY5Y human neuroblastoma cells were used to analyze the protective effects of water extract of ginseng (WEG) against multiple parameters such as MPP(+)-induced viability, oxidative injury, expression of Bax, Bcl-2, cytochrome c and cleaved caspase-3. RESULTS WEG exerted inhibitory effect on cell death, overproduction of ROS, elevated Bax/Bcl-2 ratio, release of cytochrome c and activation of caspase-3 expression in MPP(+)-treated SH-SY5Y cells. CONCLUSIONS WEG exhibited significant protective effects against MPP(+)-induced cytotoxicity in SH-SY5Y cells possibly through the suppression of ROS generation and the inhibition of mitochondria-dependent apoptotic pathway.
PLOS ONE | 2012
Wei Cui; Zaijun Zhang; Wenming Li; Shinghung Mak; Shengquan Hu; Huan Zhang; Shuai Yuan; Jianhui Rong; Tony Chunglit Choi; Simon Ming-Yuen Lee; Yifan Han
SU5416 was originally designed as a potent and selective inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) for cancer therapy. In this study, we have found for the first time that SU5416 unexpectedly prevented 1-methyl-4-phenylpyridinium ion (MPP+)-induced neuronal apoptosis in cerebellar granule neurons, and decreased 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced loss of dopaminergic neurons and impairment of swimming behavior in zebrafish in a concentration-dependent manner. However, VEGFR-2 kinase inhibitor II, another specific VEGFR-2 inhibitor, failed to reverse neurotoxicity at the concentration exhibiting anti-angiogenic activity, strongly suggesting that the neuroprotective effect of SU5416 is independent from its anti-angiogenic action. SU5416 potently reversed MPP+-increased intracellular nitric oxide level with an efficacy similar to 7-nitroindazole, a specific neuronal nitric oxide synthase (nNOS) inhibitor. Western blotting analysis showed that SU5416 reduced the elevation of nNOS protein expression induced by MPP+. Furthermore, SU5416 directly inhibited the enzyme activity of rat cerebellum nNOS with an IC50 value of 22.7 µM. In addition, knock-down of nNOS expression using short hairpin RNA (shRNA) abolished the neuroprotective effects of SU5416 against MPP+-induced neuronal loss. Our results strongly demonstrate that SU5416 might exert its unexpected neuroprotective effects by concurrently reducing nNOS protein expression and directly inhibiting nNOS enzyme activity. In view of the capability of SU5416 to cross the blood-brain barrier and the safety for human use, our findings further indicate that SU5416 might be a novel drug candidate for neurodegenerative disorders, particularly those associated with NO-mediated neurotoxicity.
British Journal of Pharmacology | 2013
Wei Cui; Zaijun Zhang; Wenming Li; Shengquan Hu; Shinghung Mak; Huan Zhang; Renwen Han; Shuai Yuan; Sai Li; Fei Sa; Daping Xu; Zhi-Xiu Lin; Zhong Zuo; Jianhui Rong; Edmond Dik-Lung Ma; Tony Chunglit Choi; Simon My Lee; Yifan Han
SU4312, a potent and selective inhibitor of VEGF receptor‐2 (VEGFR‐2), has been designed to treat cancer. Recent studies have suggested that SU4312 can also be useful in treating neurodegenerative disorders. In this study, we assessed neuroprotection by SU4312 against 1‐methyl‐4‐phenylpyridinium ion (MPP+)‐induced neurotoxicity and further explored the underlying mechanisms.
Neurochemistry International | 2013
Shengquan Hu; Wei Cui; Shinghung Mak; Jing Tang; Chunglit Choi; Yuan Ping Pang; Yifan Han
We have previously reported that bis(propyl)-cognitin (B3C), similar to memantine (MEM), is an uncompetitive N-methyl-d-aspartate receptor antagonist with fast off-rate property. In the current study, we further demonstrated that in primary cultures of rat cerebellar granule neurons (CGNs), 2h pretreatment of B3C (IC50, 0.45μM) prevented glutamate-induced excitotoxicity 10 times more potently than memantine (IC50, 4.58 μM), as evidenced by cell viability and lactate dehydrogenase release assays. Additionally, B3C pretreatment could inhibit the increase of intracellular nitric oxide (NO) and the activation of phosphorylated ERK, and reverse the suppression of phosphorylated Akt and GSK3β caused by glutamate. Furthermore, the neuroprotection of B3C was abolished by phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002. Meanwhile, pharmacological inhibition showed that neither the single specific inhibitors of nitric oxide synthase (L-NMMA), MEK1/2 (U0126) and GSK3β (SB415286 and LiCl) nor the combinations of any two of them could fully protect against glutamate-induced apoptosis. However, the co-application of these three inhibitors produced nearly 100% inhibition of glutamate-induced apoptosis. These results taken together suggest that B3C elicits neuroprotection against glutamate-induced neurotoxicity in CGNs via concurrent inhibition of NO, MAPK/ERK pathways and activation of PI3-K/Akt/GSK3β pathway. Combining these and our previous publications, it is conjectured that the dimer might be an ideal candidate drug in delaying the course of neurodegeneration related with Alzheimers disease.
CNS Neuroscience & Therapeutics | 2014
Xiaojuan Chao; Ziwei Chen; Anmin Liu; Xixin He; Shao-Gui Wang; Yuting Wang; Peiqing Liu; Charles Ramassamy; Shinghung Mak; Wei Cui; Ah-Ng Tony Kong; Zhi-Ling Yu; Yifan Han; Rongbiao Pi
Oxidative stress (OS) plays an important role in the pathogenesis of neurodegenerative diseases, including Alzheimers disease (AD). This study was designed to uncover the cellular and biochemical mechanisms underlying the neuroprotective effects of tacrine‐3‐caffeic acid (T3CA), a novel promising multifunctional anti‐Alzheimers dimer, against OS‐induced neuronal death.
Neurochemistry International | 2011
Huan Zhang; Shinghung Mak; Wei Cui; Wenming Li; Renwen Han; Shengquan Hu; Minzhong Ye; Rongbiao Pi; Yifan Han
Oxidative stress is closely related to the pathogenesis of neurodegenerative disorders such as Parkinsons disease (PD). In this study, we investigated the neuroprotective effect of tacrine-ferulic acid dimers linked by an alkylenediamine side chain (TnFA, n=2-7), a series of novel acetylcholinesterase inhibitors, against 6-hydroxydopamine (6-OHDA)-induced apoptosis in PC12 cells. Among these dimers, pre-treatment of tacrine(2)-ferulic acid (T2FA, 3-30 μM) attenuated 6-OHDA-induced apoptosis in a concentration-dependent manner. The activations of glycogen synthase kinase 3β (GSK3β) and extracellular signal-regulated kinase (ERK) were observed after the treatment of 6-OHDA. Both SB415286 (an inhibitor of GSK3β) and PD98059 (an inhibitor of ERK kinase) reduced the neurotoxicity induced by 6-OHDA, indicating that GSK3β and ERK are involved in 6-OHDA-induced apoptosis. T2FA was able to inhibit the activation of GSK3β, but not ERK, in an Akt-dependent manner. Furthermore, LY294002, a phosphoinositide 3-kinase inhibitor, abolished the neuroprotective effect of T2FA. Collectively, these results suggest that T2FA prevents 6-OHDA-induced apoptosis possibly by activating the Akt pathway in PC12 cells.
European Journal of Pharmacology | 2009
Hongjun Fu; Juan Dou; Wenming Li; Wei Cui; Shinghung Mak; Qiansheng Hu; Jialie Luo; Colin S.C. Lam; Yuan Ping Pang; Moussa B. H. Youdim; Yifan Han
We have recently demonstrated that bis(7)-Cognitin, a promising multifunctional anti-Alzheimers dimer, can remarkably reduce the generation of amyloid beta peptide (Abeta) by inhibiting beta-secretase (BACE-1) and activating alpha-secretase activity. In this study, the mechanism(s) underlying bis(7)-Cognitins regulation of the activity of these two proteases was further investigated. In N2a cells stably expressing human amyloid precursor protein with the Swedish mutation (APPswe), the reduction in Abeta production induced by 1microM bis(7)-Cognitin was not altered by the co-pretreatment of muscarinic and nicotinic cholinergic receptor antagonists, indicating that the regulation of APP processing by this dimer is independent of cholinergic transmission. Furthermore, bis(7)-Cognitin (0.1-3microM) significantly increased protein kinase C (PKC) activity in cells and in vitro in a concentration-dependent manner. Administration of a PKC activator, phorbol 12-myristate 13-acetate (PMA), concentration-dependently increased the alpha-secretase cleavage products, and reduced the BACE-1 cleavage products. In addition, the inhibition of PKC prevented PMA- or bis(7)-Cognitin-induced alterations in alpha-secretase and BACE-1 activities, eliminating reductions in Abeta production seen with PMA or the dimer. These results strongly suggest that bis(7)-Cognitin may reduce the biosynthesis of Abeta by inhibiting BACE-1 and activating alpha-secretase concurrently through the direct activation of PKC. Combined with previous findings of direct inhibition of AChE and BACE-1 by this dimer, this work indicates that strategy may have potential to provide new insights into designing novel drugs that target multiple steps of aberrant APP processing to treat Alzheimers disease.
Neurochemistry International | 2011
Wei Cui; Wenming Li; Renwen Han; Shinghung Mak; Huan Zhang; Shengquan Hu; Jianhui Rong; Yifan Han
Vascular endothelial growth factor (VEGF), a specific pro-angiogenic peptide, has shown neuroprotective effects in the Parkinsons disease (PD) models, but the underlying mechanisms remain elusive. In this study, the neuroprotective properties of VEGF on 1-methyl-4-phenylpyridinium ion (MPP(+))-induced neurotoxicity in primary cerebellar granule neurons were investigated. Pretreatment of VEGF prevented MPP(+)-induced neuronal apoptosis in a concentration- and time-dependent manner. And this prevention was blocked by PTK787/ZK222584, a VEGF receptor-2 specific inhibitor. Both inhibition of the Akt pathway and activation of the extracellular signal-regulated kinase (ERK) pathway contribute to MPP(+)-induced neuronal apoptosis. VEGF reversed the inhibition of phosphoinositide 3-kinase (PI3-K)/Akt pathway caused by MPP(+), but further enhanced the activation of ERK induced by MPP(+). Interestingly, VEGF and PD98059 (an ERK kinase inhibitor) play a synergistic role in protecting neurons from MPP(+)-induced toxicity. Collectively, these findings suggest that the PI3-K/Akt and ERK pathways activated by VEGF play opposite roles in MPP(+)-induced neuronal apoptosis. This finding offers not only a new and clinically significant modality as to how VEGF exerts its neuroprotective effects but also a novel therapeutic strategy for PD by differentially regulating PD-associated signaling pathways.
Brain Research | 2011
Wei Cui; Guozhen Cui; Wenming Li; Zaijun Zhang; Shengquan Hu; Shinghung Mak; Huan Zhang; Paul R. Carlier; Chunglit Choi; Yi-Tao Wong; Simon Ming-Yuen Lee; Yifan Han
The cause of many neurodegenerative disorders can be ascribed to the loss of functional neurons, and thus agents capable of promoting neuronal differentiation may have therapeutic benefits to patients of these disorders. In this study, the effects and underlying mechanisms of bis(12)-hupyridone (B12H), a novel dimeric acetylcholinesterase inhibitor modified from huperzine A (HA), on neuronal differentiation were investigated using both the rat PC12 pheochromocytoma cell line and adult rat hippocampus neural stem cells. B12H (3-30 μM), characterized by morphological changes and expression of GAP-43, induced neurite outgrowth in a concentration- and time-dependent manner, with almost 3-fold higher efficacy than that of HA in PC12 cells. Furthermore, B12H (2.5-10 μM), but not HA, promoted neuronal differentiation as shown by the percentage increase of βIII-tubulin positive neurons in neural stem cells. The activities of extracellular signal-regulated kinase (ERK), as well as its downstream transcription factors Elk-1 and cAMP response element-binding protein (CREB) were elevated in the B12H-treated PC12 cells. Mitogen-activated protein kinase kinase inhibitors and alpha7-nicotinic acetylcholine receptor (α7nAChR) antagonist blocked the neurite outgrowth and the activation of ERK induced by B12H. All these findings suggest that B12H potently induces pro-neuronal cells into differentiated neurons by activating the ERK pathway possibly via regulating α7nAChR. These findings support the recent proposition that α7nAChR is required for the neuronal dendritic arborization and differentiation in the adult mice hippocampus, and provide insights into the possible therapeutic potential of B12H in treating neurodegenerative disorders.
CNS Neuroscience & Therapeutics | 2014
Wei Cui; Zaijun Zhang; Shengquan Hu; Shinghung Mak; Daping Xu; Chunglit Choi; Yuqiang Wang; Wahkeung Tsim; Mingyuen Lee; Jianhui Rong; Yifan Han
Sunitinib is an inhibitor of the multiple receptor tyrosine kinases (RTKs) for cancer therapy. Some sunitinib analogues could prevent neuronal death induced by various neurotoxins. However, the neuroprotective effects of sunitinib have not been reported.