Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shingo Nagawa is active.

Publication


Featured researches published by Shingo Nagawa.


Development | 2010

RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis.

Atsuko Kinoshita; Shigeyuki Betsuyaku; Yuriko Osakabe; Shinji Mizuno; Shingo Nagawa; Yvonne Stahl; Rüdiger Simon; Kazuko Yamaguchi-Shinozaki; Hiroo Fukuda; Shinichiro Sawa

The shoot apical meristem (SAM) is the fundamental structure that is located at the growing tip and gives rise to all aerial parts of plant tissues and organs, such as leaves, stems and flowers. In Arabidopsis thaliana, the CLAVATA3 (CLV3) pathway regulates the stem cell pool in the SAM, in which a small peptide ligand derived from CLV3 is perceived by two major receptor complexes, CLV1 and CLV2-CORYNE (CRN)/SUPPRESSOR OF LLP1 2 (SOL2), to restrict WUSCHEL (WUS) expression. In this study, we used the functional, synthetic CLV3 peptide (MCLV3) to isolate CLV3-insensitive mutants and revealed that a receptor-like kinase, RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2), also known as TOADSTOOL 2 (TOAD2), is another key regulator of meristem maintenance. Mutations in the RPK2 gene result in stem cell expansion and increased number of floral organs, as seen in the other clv mutants. These phenotypes are additive with both clv1 and clv2 mutations. Moreover, our biochemical analyses using Nicotiana benthamiana revealed that RPK2 forms homo-oligomers but does not associate with CLV1 or CLV2. These genetic and biochemical findings suggest that three major receptor complexes, RPK2 homomers, CLV1 homomers and CLV2-CRN/SOL2 heteromers, are likely to mediate three signalling pathways, mainly in parallel but with potential crosstalk, to regulate the SAM homeostasis.


Cell | 2010

Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis.

Tongda Xu; Mingzhang Wen; Shingo Nagawa; Ying Fu; Jin-Gui Chen; Ming Jing Wu; Catherine Perrot-Rechenmann; Jiří Friml; Alan M. Jones; Zhenbiao Yang

Auxin is a multifunctional hormone essential for plant development and pattern formation. A nuclear auxin-signaling system controlling auxin-induced gene expression is well established, but cytoplasmic auxin signaling, as in its coordination of cell polarization, is unexplored. We found a cytoplasmic auxin-signaling mechanism that modulates the interdigitated growth of Arabidopsis leaf epidermal pavement cells (PCs), which develop interdigitated lobes and indentations to form a puzzle-piece shape in a two-dimensional plane. PC interdigitation is compromised in leaves deficient in either auxin biosynthesis or its export mediated by PINFORMED 1 localized at the lobe tip. Auxin coordinately activates two Rho GTPases, ROP2 and ROP6, which promote the formation of complementary lobes and indentations, respectively. Activation of these ROPs by auxin occurs within 30 s and depends on AUXIN-BINDING PROTEIN 1. These findings reveal Rho GTPase-based auxin-signaling mechanisms, which modulate the spatial coordination of cell expansion across a field of cells.


The Plant Cell | 2009

Functional Analyses of LONELY GUY Cytokinin-Activating Enzymes Reveal the Importance of the Direct Activation Pathway in Arabidopsis

Takeshi Kuroha; Hiroki Tokunaga; Mikiko Kojima; Nanae Ueda; Takashi Ishida; Shingo Nagawa; Hiroo Fukuda; Keiko Sugimoto; Hitoshi Sakakibara

Cytokinins play crucial roles in diverse aspects of plant growth and development. Spatiotemporal distribution of bioactive cytokinins is finely regulated by metabolic enzymes. LONELY GUY (LOG) was previously identified as a cytokinin-activating enzyme that works in the direct activation pathway in rice (Oryza sativa) shoot meristems. In this work, nine Arabidopsis thaliana LOG genes (At LOG1 to LOG9) were predicted as homologs of rice LOG. Seven At LOGs, which are localized in the cytosol and nuclei, had enzymatic activities equivalent to that of rice LOG. Conditional overexpression of At LOGs in transgenic Arabidopsis reduced the content of N6-(Δ2-isopentenyl)adenine (iP) riboside 5′-phosphates and increased the levels of iP and the glucosides. Multiple mutants of At LOGs showed a lower sensitivity to iP riboside in terms of lateral root formation and altered root and shoot morphology. Analyses of At LOG promoter:β-glucuronidase fusion genes revealed differential expression of LOGs in various tissues during plant development. Ectopic overexpression showed pleiotropic phenotypes, such as promotion of cell division in embryos and leaf vascular tissues, reduced apical dominance, and a delay of leaf senescence. Our results strongly suggest that the direct activation pathway via LOGs plays a pivotal role in regulating cytokinin activity during normal growth and development in Arabidopsis.


Science | 2014

Cell Surface ABP1-TMK Auxin-Sensing Complex Activates ROP GTPase Signaling

Tongda Xu; Ning Dai; Jisheng Chen; Shingo Nagawa; Min Cao; Hongjiang Li; Zimin Zhou; Xu Chen; Riet De Rycke; Hana Rakusová; Wuyi Wang; Alan M. Jones; Jiří Friml; Sara E. Patterson; Anthony B. Bleecker; Zhenbiao Yang

A Different Route The plant hormone auxin regulates a variety of developmental processes and responses to environmental inputs, often via changes in gene transcription. Xu et al. (p. 1025) analyzed a signaling pathway involving ABP1 (auxin-binding protein 1) that affects the cytoskeleton and endocytosis in Arabidopsis without changing gene transcription. Instead, ABP1 functions at the cell surface to bind auxin and a family of membrane kinases, thereby activating intracellular guanosine triphosphatases to initiate important developmental changes in cell shape. An alternate signaling route for the plant hormone auxin goes directly inside from the cell surface. Auxin-binding protein 1 (ABP1) was discovered nearly 40 years ago and was shown to be essential for plant development and morphogenesis, but its mode of action remains unclear. Here, we report that the plasma membrane–localized transmembrane kinase (TMK) receptor–like kinases interact with ABP1 and transduce auxin signal to activate plasma membrane–associated ROPs [Rho-like guanosine triphosphatases (GTPase) from plants], leading to changes in the cytoskeleton and the shape of leaf pavement cells in Arabidopsis. The interaction between ABP1 and TMK at the cell surface is induced by auxin and requires ABP1 sensing of auxin. These findings show that TMK proteins and ABP1 form a cell surface auxin perception complex that activates ROP signaling pathways, regulating nontranscriptional cytoplasmic responses and associated fundamental processes.


PLOS Biology | 2012

ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis

Shingo Nagawa; Tongda Xu; Deshu Lin; Pankaj Dhonukshe; Xingxing Zhang; Jiri Friml; Ben Scheres; Ying Fu; Zhenbiao Yang

A study in leaf epidermal pavement cells reveals that auxin activation of a Rho-like GTPase from plants induces inhibition of endocytosis through the clathrin-mediated pathway by regulating the accumulation of cortical F-actin.


Current Biology | 2012

A ROP GTPase-Dependent Auxin Signaling Pathway Regulates the Subcellular Distribution of PIN2 in Arabidopsis Roots

Deshu Lin; Shingo Nagawa; Jisheng Chen; Lingyan Cao; Xu Chen; Tongda Xu; Hongjiang Li; Pankaj Dhonukshe; Chizuko Yamamuro; Jiri Friml; Ben Scheres; Ying Fu; Zhenbiao Yang

PIN-FORMED (PIN) protein-mediated auxin polar transport is critically important for development, pattern formation, and morphogenesis in plants. Auxin has been implicated in the regulation of polar auxin transport by inhibiting PIN endocytosis, but how auxin regulates this process is poorly understood. Our genetic screen identified the Arabidopsis SPIKE1 (SPK1) gene whose loss-of-function mutations increased lateral root density and retarded gravitropic responses, as do pin2 knockout mutations. SPK1 belongs to the conserved DHR2-Dock family of Rho guanine nucleotide exchange factors. The spk1 mutations induced PIN2 internalization that was not suppressed by auxin, as did the loss-of-function mutations for Rho-like GTPase from Plants 6 (ROP6)-GTPase or its effector RIC1. Furthermore, SPK1 was required for auxin induction of ROP6 activation. Our results have established a Rho GTPase-based auxin signaling pathway that maintains PIN2 polar distribution to the plasma membrane via inhibition of its internalization in Arabidopsis roots. Our findings provide new insights into signaling mechanisms that underlie the regulation of the dynamic trafficking of PINs required for long-distance auxin transport and that link auxin signaling to PIN-mediated pattern formation and morphogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Clusters of bioactive compounds target dynamic endomembrane networks in vivo

Georgia Drakakaki; Stéphanie Robert; Anna Maria Szatmari; Michelle Q. Brown; Shingo Nagawa; Daniël Van Damme; Marilyn Leonard; Zhenbiao Yang; Thomas Girke; Sandra L. Schmid; Eugenia Russinova; Jiří Friml; Natasha V. Raikhel; Glenn R. Hicks

Endomembrane trafficking relies on the coordination of a highly complex, dynamic network of intracellular vesicles. Understanding the network will require a dissection of cargo and vesicle dynamics at the cellular level in vivo. This is also a key to establishing a link between vesicular networks and their functional roles in development. We used a high-content intracellular screen to discover small molecules targeting endomembrane trafficking in vivo in a complex eukaryote, Arabidopsis thaliana. Tens of thousands of molecules were prescreened and a selected subset was interrogated against a panel of plasma membrane (PM) and other endomembrane compartment markers to identify molecules that altered vesicle trafficking. The extensive image dataset was transformed by a flexible algorithm into a marker-by-phenotype-by-treatment time matrix and revealed groups of molecules that induced similar subcellular fingerprints (clusters). This matrix provides a platform for a systems view of trafficking. Molecules from distinct clusters presented avenues and enabled an entry point to dissect recycling at the PM, vacuolar sorting, and cell-plate maturation. Bioactivity in human cells indicated the value of the approach to identifying small molecules that are active in diverse organisms for biology and drug discovery.


Small GTPases | 2010

RHO GTPase in plants: Conservation and invention of regulators and effectors

Shingo Nagawa; Tongda Xu; Zhenbiao Yang

Plants possess a single subfamily of Rho GTPases, ROP, which does usual things as do Rho-family GTPases in animal and fungal systems, namely participating in the spatial control of cellular processes by signaling to the cytoskeleton and vesicular trafficking. As one would expect, ROPs are modulated by conserved regulators such as DHR2-type GEFs, RhoGAPs, and Rho GDIs. What is surprising is that plants have invented new regulators such as PRONE-type GEFs (known as RopGEFs) and effectors such as RICs and ICRs/RIPs in the regulation of the cytoskeleton and vesicular trafficking. This review will discuss recent work on characterizing ROP regulators and effectors as well as addressing why and how a mixture of conserved and novel Rho signaling mechanisms is utilized to modulate fundamental cellular processes such as cytoskeletal dynamics/reorganization and vesicular trafficking.


Cell Research | 2011

Phosphorylation switch modulates the interdigitated pattern of PIN1 localization and cell expansion in Arabidopsis leaf epidermis.

Hongjiang Li; Deshu Lin; Pankaj Dhonukshe; Shingo Nagawa; Dandan Chen; Jiří Friml; Ben Scheres; Hongwei Guo; Zhenbiao Yang

Within a multicellular tissue cells may coordinately form a singular or multiple polar axes, but it is unclear whether a common mechanism governs different types of polar axis formation. The phosphorylation status of PIN proteins, which is directly affected by the PINOID (PID) protein kinase and the PP2A protein phosphatase, is known to regulate the apical-basal polarity of PIN localization in bipolar cells of roots and shoot apices. Here, we provide evidence that the phosphorylation status-mediated PIN polarity switch is widely used to modulate cellular processes in Arabidopsis including multipolar pavement cells (PC) with interdigitated lobes and indentations. The degree of PC interdigitation was greatly reduced either when the FYPP1 gene, which encodes a PP2A called phytochrome-associated serine/threonine protein phosphatase, was knocked out or when the PID gene was overexpressed (35S::PID). These genetic modifications caused PIN1 localization to switch from lobe to indentation regions. The PP2A and PID mediated switching of PIN1 localization is strikingly similar to their regulation of the apical-basal polarity switch of PIN proteins in other cells. Our findings suggest a common mechanism for the regulation of PIN1 polarity formation, a fundamental cellular process that is crucial for pattern formation both at the tissue/organ and cellular levels.


Molecular Plant | 2008

Cell Polarity Signaling: Focus on Polar Auxin Transport

Xiaowei Gao; Shingo Nagawa; Gen-Xuan Wang; Zhenbiao Yang

Polar auxin transport, which is required for the formation of auxin gradients and directional auxin flows that are critical for plant pattern formation, morphogenesis, and directional growth response to vectorial cues, is mediated by polarized sub-cellular distribution of PIN-FORMED Proteins (PINs, auxin efflux carriers), AUX1/AUX1-like proteins (auxin influx facilitators), and multidrug resistance P-glycoproteins (MDR/PGP). Polar localization of these proteins is controlled by both developmental and environmental cues. Recent studies have revealed cellular (endocytosis, transcytosis, and endosomal sorting and recycling) and molecular (PINOID kinase, protein phosphatase 2A) mechanisms underlying the polar distribution of these auxin transport proteins. Both TIR1-mediated auxin signaling and TIR1-independent auxin-mediated endocytosis have been shown to regulate polar PIN localization and auxin flow, implicating auxin as a self-organizing signal in directing polar transport and directional flows.

Collaboration


Dive into the Shingo Nagawa's collaboration.

Top Co-Authors

Avatar

Zhenbiao Yang

University of California

View shared research outputs
Top Co-Authors

Avatar

Tongda Xu

University of California

View shared research outputs
Top Co-Authors

Avatar

Jiří Friml

Institute of Science and Technology Austria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deshu Lin

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Hongjiang Li

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Fu

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Ben Scheres

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Dan Zhang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge