Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shingo Yasuhara is active.

Publication


Featured researches published by Shingo Yasuhara.


Journal of Histochemistry and Cytochemistry | 2003

Comparison of Comet Assay, Electron Microscopy, and Flow Cytometry for Detection of Apoptosis

Shingo Yasuhara; Ying Zhu; Takashi Matsui; Naveen Tipirneni; Yoko Yasuhara; Masao Kaneki; Anthony Rosenzweig; J. A. Jeevendra Martyn

Differentiating apoptosis from necrosis is a challenge in single cells and in parenchymal tissues. The techniques available, including in situ TUNEL (Terminal deoxyribonucleotide transferase-mediated dUTP-X Nick End-Labeling) staining, DNA ladder assay, and flow cytometry, suffer from low sensitivity or from a high false-positive rate. This study, using a Jurkat cell model, initially evaluated the specificity of the neutral comet assay and flow cytometry compared to the gold standard, electron microscopy, for detection of apoptosis and necrosis. Neutral comet assay distinguished apoptosis from necrosis in Jurkat cells, as evidenced by the increased comet score in apoptotic cells and the almost zero comet score in necrotic cells. These findings were consistent with those of electron microscopy and flow cytometry. Furthermore, using rats with burn or ischemia/reperfusion injury, well-established models of skeletal and cardiac muscle tissue apoptosis, respectively, we applied the comet assay to detect apoptosis in these muscles. Neutral comet assay was able to detect apoptotic changes in both models. In the muscle samples from rats with burn or ischemia-reperfusion injury, the comet score was higher than that of muscle samples from their respective controls. These studies confirm the consistency of the comet assay for detection of apoptosis in single cells and provide evidence for its applicability as an additional method to detect apoptosis in parenchymal cells.


Anesthesiology | 2008

Obesity-induced insulin resistance and hyperglycemia: etiologic factors and molecular mechanisms.

J. A. Jeevendra Martyn; Masao Kaneki; Shingo Yasuhara

Obesity is a major cause of type 2 diabetes, clinically evidenced as hyperglycemia. The altered glucose homeostasis is caused by faulty signal transduction via the insulin signaling proteins, which results in decreased glucose uptake by the muscle, altered lipogenesis, and increased glucose output by the liver. The etiology of this derangement in insulin signaling is related to a chronic inflammatory state, leading to the induction of inducible nitric oxide synthase and release of high levels of nitric oxide and reactive nitrogen species, which together cause posttranslational modifications in the signaling proteins. There are substantial differences in the molecular mechanisms of insulin resistance in muscle versus liver. Hormones and cytokines from adipocytes can enhance or inhibit both glycemic sensing and insulin signaling. The role of the central nervous system in glucose homeostasis also has been established. Multipronged therapies aimed at rectifying obesity-induced anomalies in both central nervous system and peripheral tissues may prove to be beneficial.


PLOS ONE | 2007

Primary Role of Functional Ischemia, Quantitative Evidence for the Two-Hit Mechanism, and Phosphodiesterase-5 Inhibitor Therapy in Mouse Muscular Dystrophy

Akihiro Asai; Nita Sahani; Masao Kaneki; Yasuyoshi Ouchi; J. A. Jeevendra Martyn; Shingo Yasuhara

Background Duchenne Muscular Dystrophy (DMD) is characterized by increased muscle damage and an abnormal blood flow after muscle contraction: the state of functional ischemia. Until now, however, the cause-effect relationship between the pathogenesis of DMD and functional ischemia was unclear. We examined (i) whether functional ischemia is necessary to cause contraction-induced myofiber damage and (ii) whether functional ischemia alone is sufficient to induce the damage. Methodology/Principal Findings In vivo microscopy was used to document assays developed to measure intramuscular red blood cell flux, to quantify the amount of vasodilatory molecules produced from myofibers, and to determine the extent of myofiber damage. Reversal of functional ischemia via pharmacological manipulation prevented contraction-induced myofiber damage in mdx mice, the murine equivalent of DMD. This result indicates that functional ischemia is required for, and thus an essential cause of, muscle damage in mdx mice. Next, to determine whether functional ischemia alone is enough to explain the disease, the extent of ischemia and the amount of myofiber damage were compared both in control and mdx mice. In control mice, functional ischemia alone was found insufficient to cause a similar degree of myofiber damage observed in mdx mice. Additional mechanisms are likely contributing to cause more severe myofiber damage in mdx mice, suggestive of the existence of a “two-hit” mechanism in the pathogenesis of this disease. Conclusions/Significance Evidence was provided supporting the essential role of functional ischemia in contraction-induced myofiber damage in mdx mice. Furthermore, the first quantitative evidence for the “two-hit” mechanism in this disease was documented. Significantly, the vasoactive drug tadalafil, a phosphodiesterase 5 inhibitor, administered to mdx mice ameliorated muscle damage.


Journal of Biological Chemistry | 2005

Inducible Nitric-oxide Synthase and NO Donor Induce Insulin Receptor Substrate-1 Degradation in Skeletal Muscle Cells

Hiroki Sugita; Masaki Fujimoto; Takashi Yasukawa; Nobuyuki Shimizu; Michiko Sugita; Shingo Yasuhara; J. A. Jeevendra Martyn; Masao Kaneki

Chronic inflammation plays an important role in insulin resistance. Inducible nitric-oxide synthase (iNOS), a mediator of inflammation, has been implicated in many human diseases including insulin resistance. However, the molecular mechanisms by which iNOS mediates insulin resistance remain largely unknown. Here we demonstrate that exposure to NO donor or iNOS transfection reduced insulin receptor substrate (IRS)-1 protein expression without altering the mRNA level in cultured skeletal muscle cells. NO donor increased IRS-1 ubiquitination, and proteasome inhibitors blocked NO donor-induced reduction in IRS-1 expression in cultured skeletal muscle cells. The effect of NO donor on IRS-1 expression was cGMP-independent and accentuated by concomitant oxidative stress, suggesting an involvement of nitrosative stress. Inhibitors for phosphatidylinositol-3 kinase, mammalian target of rapamycin, and c-Jun amino-terminal kinase failed to block NO donor-induced IRS-1 reduction, whereas these inhibitors prevented insulin-stimulated IRS-1 decrease. Moreover iNOS expression was increased in skeletal muscle of diabetic (ob/ob) mice compared with lean wild-type mice. iNOS gene disruption or treatment with iNOS inhibitor ameliorated depressed IRS-1 expression in skeletal muscle of diabetic (ob/ob) mice. These findings indicate that iNOS reduces IRS-1 expression in skeletal muscle via proteasome-mediated degradation and thereby may contribute to obesity-related insulin resistance.


Journal of Burn Care & Rehabilitation | 1999

The 1999 Moyer award. Burn injury induces skeletal muscle apoptosis and the activation of caspase pathways in rats.

Shingo Yasuhara; Emi Kanakubo; Mary–Ellen Perez; Masao Kaneki; Toshiro Fujita; Takashi Okamoto; J. A. Jeevendra Martyn

Burn injury induces many metabolic disorders, including altered protein kinetics with muscle weakness. The skeletal muscle weakness that occurs as a result of the loss of muscle mass causes hypoventilation and dependence on respirators, a condition that increases morbidity and mortality. The presence or absence of apoptosis in muscle, which can be a cause of the loss of muscle mass, was studied in rats after they had received scald burns to 40% of their body surface areas. The potential pro-apoptotic pathways that were activated were also examined. The burn injury produced did not directly destroy the muscle beneath; muscles just beneath the burned surface showed dramatic apoptotic changes according to assessments with the cell death enzyme-linked immunosorbent assay and in situ TdT-mediated dUTP-X nick-end labeling staining. The extent of apoptosis reached a peak on postburn days 3 and 7. Of note is that apoptosis was also confirmed in muscles at sites distant from the burn injury (eg, tibialis anterior) on both postburn days 3 and 7, a condition that is suggestive of the systemic effects of pro-apoptotic factors. To show that heat itself causes the initiation of the pro-apoptotic signaling, muscle-derived C2C12 cells were subjected to heat treatment at 55 degrees C. Ceramide, a key apoptotic second messenger, was observed to increase in the caveolae fraction but not in non-caveolae fraction of these muscle cells. In muscle tissue from burned rats, stress-activated protein kinase (a downstream-signaling kinase of ceramide) was activated soon after burn injury; this finding is consistent with the hypothesis that ceramide plays a role in burn-induced apoptosis. Caspase-1, -3, and -9, important final apoptotic enzymes involved with the downstream signaling of stress-activated protein kinase, were also activated after burn injury in muscle tissue from burned rats. These findings confirm the hypothesis that apoptosis occurs in skeletal muscle and that major apoptotic pathways are activated after a burn injury. Further characterization of these apoptotic signaling cascades may provide new therapeutic targets for the prevention of burn-induced muscle wasting.


Critical Care Medicine | 2007

Mitochondria, endoplasmic reticulum, and alternative pathways of cell death in critical illness.

Shingo Yasuhara; Akihiro Asai; Nita Sahani; J. A. Jeevendra Martyn

Dying cells are distinguished by their biochemical and morphologic traits and categorized into three subtypes: apoptosis, oncosis (necrosis), and cell death with autophagy. Each of these types of cell death plays critical roles in tissue morphogenesis during normal development and in the pathogenesis of human diseases. Given that tissue homeostasis is controlled by the intricate balance between degeneration and regeneration, it is essential to understand the mechanisms of different forms of cell death to establish and improve therapeutic interventions for prevention and rescue of these cell death-related disorders. Critical illness, including sepsis, trauma, and burn injury, is often complicated by multiple organ dysfunction syndrome and is accompanied by increased cell death in parenchymal and nonparenchymal tissues. Accumulating evidence suggests that augmented cell death plays an important role in the organ failure in critical illness. We discuss possible therapeutic approaches for prevention of cell death, particularly apoptotic cell death.


The FASEB Journal | 2005

Proton NMR spectroscopy shows lipids accumulate in skeletal muscle in response to burn trauma-induced apoptosis

Loukas G. Astrakas; Igor Goljer; Shingo Yasuhara; Katie Padfield; Qunhao Zhang; Suresh Gopalan; Michael Mindrinos; George Dai; Yong-Ming Yu; J. A. Jeevendra Martyn; Ronald G. Tompkins; Laurence G. Rahme; A. Aria Tzika

Burn trauma triggers hypermetabolism and muscle wasting via increased cellular protein degradation and apoptosis. Proton nuclear magnetic resonance (1H NMR) spectroscopy can detect mobile lipids in vivo. To examine the local effects of burn in skeletal muscle, we performed in vivo 1H NMR on mice 3 days after burn trauma; and ex vivo, high‐resolution, magic angle spinning 1H NMR on intact excised mouse muscle samples before and 1 and 3 days after burn. These samples were then analyzed for apoptotic nuclei using a terminal deoxynucleotidyl transferase‐mediated dUTP nick end‐labeling (TUNEL) assay. To confirm our NMR and cell biology results, we used transcriptome analysis to demonstrate that burn trauma alters the expression of genes involved in lipid metabolism and apoptosis. Our results demonstrate that burn injury results in a localized intramyocellular lipid accumulation, which in turn is accompanied by burn‐induced apoptosis and mitochondrial dysfunction, as seen by the up‐regulation of apoptotic genes and down‐regulation of genes that encode lipid oxidation and the peroxisomal proliferator activator receptor γ coactivator PGC‐1β. Moreover, the increased levels of bisallylic methylene fatty acyl protons (2.8 ppm) and vinyl protons (5.4 ppm), in conjunction with the TUNEL assay results, further suggest that burn trauma results in apoptosis. Together, our results provide new insight into the local physiological changes that occur in skeletal muscle after severe burn trauma. Astrakas, L. G., Goljer, I., Yasuhara, S., Padfield, K. E., Zhang, Q., Gopalan, S., Mindrinos, M. N., Dai, G., Yu, Y.‐M., Jeevendra Martyn, J. A., Tompkins, R. G., Rahme, L. G., Tzika, A. A. Proton NMR spectroscopy shows lipids accumulate in skeletal muscle in response to burn trauma induced apoptosis. FASEB J. 19, 1431–1440 (2005)


Muscle & Nerve | 2013

Lack of caspase-3 attenuates immobilization-induced muscle atrophy and loss of tension generation along with mitigation of apoptosis and inflammation

Shimei Zhu; Michio Nagashima; Mahammad A.S Khan; Shingo Yasuhara; Masao Kaneki; J. A. Jeevendra Martyn

Introduction: Immobilization by casting induces disuse muscle atrophy (DMA). Methods: Using wild type (WT) and caspase‐3 knockout (KO) mice, we evaluated the effect of caspase‐3 on muscle mass, apoptosis, and inflammation during DMA. Results: Caspase‐3 deficiency significantly attenuated muscle mass decrease [gastrocnemius: 28 ± 1% in KO vs. 41 ± 3% in WT; soleus: 47 ± 2% in KO vs. 56 ± 2% in WT; (P < 0.05)] and gastrocnemius twitch tension decrease (23 ± 4% in KO vs. 36 ± 3% in WT, P < 0.05) at day 14 in immobilized vs. contralateral hindlimb. Lack of caspase‐3 decreased immobilization‐induced increased apoptotic myonuclei (3.2‐fold) and macrophage infiltration (2.2‐fold) in soleus muscle and attenuated increased monocyte chemoattractant protein‐1 mRNA expression (2‐fold in KO vs. 18‐fold in WT) in gastrocnemius. Conclusions: Caspase‐3 plays a key role in DMA and associated decreased tension, presumably by acting on the apoptosis and inflammation pathways. Muscle Nerve 47: 711–721, 2013


American Journal of Physiology-endocrinology and Metabolism | 2013

Title efficacy of phosphodiesterase 5 inhibitor on distant burn-induced muscle autophagy, microcirculation, and survival rate

Sachiko Hosokawa; Hiroaki Koseki; Michio Nagashima; Yoshihiro Maeyama; Kentaro Yomogida; Chelsea Mehr; Madeleine Rutledge; Hannah Greenfeld; Masao Kaneki; Ronald G. Tompkins; J. A. Jeevendra Martyn; Shingo Yasuhara

Skeletal muscle wasting is an exacerbating factor in the prognosis of critically ill patients. Using a systemic burn injury model in mice, we have established a role of autophagy in the resulting muscle wasting that is distant from the burn trauma. We provide evidence that burn injury increases the autophagy turnover in the distal skeletal muscle by conventional postmortem tissue analyses and by a novel in vivo microscopic method using an autophagy reporter gene (tandem fluorescent LC3). The effect of tadalafil, a phosphodiesterase 5 inhibitor (PDE5I), on burn-induced skeletal muscle autophagy is documented and extends our published results that PDE5Is attenuates muscle degeneration in a muscular dystrophy model. We also designed a translational experiment to examine the impact of PDE5I on whole body and demonstrated that PDE5I administration lessened muscle atrophy, mitigated microcirculatory disturbance, and improved the survival rate after burn injury.


Metabolism-clinical and Experimental | 2012

Inducible nitric oxide synthase deficiency ameliorates skeletal muscle insulin resistance but does not alter unexpected lower blood glucose levels after burn injury in C57BL/6 mice.

Michiko Sugita; Hiroki Sugita; Min-Hye Kim; Ji Mao; Yoshikazu Yasuda; Mayu Habiro; Shohei Shinozaki; Shingo Yasuhara; Nobuyuki Shimizu; J. A. Jeevendra Martyn; Masao Kaneki

Burn injury is associated with inflammatory responses and metabolic alterations including insulin resistance. Impaired insulin receptor substrate-1 (IRS-1)-mediated insulin signal transduction is a major component of insulin resistance in skeletal muscle following burn injury. To further investigate molecular mechanisms that underlie burn injury-induced insulin resistance, we study a role of inducible nitric oxide synthase (iNOS), a major mediator of inflammation, on burn-induced muscle insulin resistance in iNOS-deficient mice. Full-thickness third-degree burn injury comprising 12% of total body surface area was produced in wild-type and iNOS-deficient C57BL/6 mice. Insulin-stimulated activation (phosphorylation) of IR, IRS-1, and Akt was assessed by immunoblotting and immunoprecipitation. Insulin-stimulated glucose uptake by skeletal muscle was evaluated ex vivo. Burn injury caused induction of iNOS in skeletal muscle of wild-type mice. The increase of iNOS expression paralleled the increase of insulin resistance, as evidenced by decreased tyrosine phosphorylation of IR and IRS-1, IRS-1 expression, insulin-stimulated activation of phosphatidylinositol 3-kinase and Akt/PKB, and insulin-stimulated glucose uptake in mouse skeletal muscle. The absence of iNOS in genetically engineered mice significantly lessened burn injury-induced insulin resistance in skeletal muscle. In wild-type mice, insulin tolerance test revealed whole-body insulin resistance in burned mice compared with sham-burned controls. This effect was reversed by iNOS deficiency. Unexpectedly, however, blood glucose levels were depressed in both wild-type and iNOS-deficient mice after burn injury. Gene disruption of iNOS ameliorated the effect of burn on IRS-1-mediated insulin signaling in skeletal muscle of mice. These findings indicate that iNOS plays a significant role in burn injury-induced skeletal muscle insulin resistance.

Collaboration


Dive into the Shingo Yasuhara's collaboration.

Top Co-Authors

Avatar

J. A. Jeevendra Martyn

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nita Sahani

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shohei Shinozaki

Tokyo Medical and Dental University

View shared research outputs
Researchain Logo
Decentralizing Knowledge