Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shinichiro Sano is active.

Publication


Featured researches published by Shinichiro Sano.


European Journal of Human Genetics | 2015

Epimutations of the IG-DMR and the MEG3-DMR at the 14q32.2 imprinted region in two patients with Silver-Russell Syndrome-compatible phenotype.

Masayo Kagami; Seiji Mizuno; Keiko Matsubara; Kazuhiko Nakabayashi; Shinichiro Sano; Tomoko Fuke; Maki Fukami; Tsutomu Ogata

Maternal uniparental disomy 14 (UPD(14)mat) and related (epi)genetic aberrations affecting the 14q32.2 imprinted region result in a clinically recognizable condition which is recently referred to as Temple Syndrome (TS). Phenotypic features in TS include pre- and post-natal growth failure, prominent forehead, and feeding difficulties that are also found in Silver–Russell Syndrome (SRS). Thus, we examined the relevance of UPD(14)mat and related (epi)genetic aberrations to the development of SRS in 85 Japanese patients who satisfied the SRS diagnostic criteria proposed by Netchine et al and had neither epimutation of the H19-DMR nor maternal uniparental disomy 7. Pyrosequencing identified hypomethylation of the DLK1-MEG3 intergenic differentially methylated region (IG-DMR) and the MEG3-DMR in two cases. In both cases, microsatellite analysis showed biparental transmission of the homologs of chromosome 14, with no evidence for somatic mosaicism with full or segmental maternal isodisomy involving the imprinted region. FISH and array comparative genomic hybridization revealed neither deletion of the two DMRs nor discernible copy number alteration in the 14q32.2 imprinted region. Methylation patterns were apparently normal in other six disease-associated DMRs. In addition, a thorough literature review revealed a considerable degree of phenotypic overlap between SRS and TS, although body asymmetry was apparently characteristic of SRS. The results indicate the occurrence of epimutation affecting the IG-DMR and the MEG3-DMR in the two cases, and imply that UPD(14)mat and related (epi)genetic aberrations constitute a rare but important underlying factor for SRS.


PLOS ONE | 2013

Molecular and Clinical Studies in 138 Japanese Patients with Silver-Russell Syndrome

Tomoko Fuke; Seiji Mizuno; Toshiro Nagai; Tomonobu Hasegawa; Reiko Horikawa; Yoko Miyoshi; Koji Muroya; Tatsuro Kondoh; Chikahiko Numakura; Seiji Sato; Kazuhiko Nakabayashi; Chiharu Tayama; Kenichiro Hata; Shinichiro Sano; Keiko Matsubara; Masayo Kagami; Kazuki Yamazawa; Tsutomu Ogata

Background Recent studies have revealed relative frequency and characteristic phenotype of two major causative factors for Silver-Russell syndrome (SRS), i.e. epimutation of the H19-differentially methylated region (DMR) and uniparental maternal disomy 7 (upd(7)mat), as well as multilocus methylation abnormalities and positive correlation between methylation index and body and placental sizes in H19-DMR epimutation. Furthermore, rare genomic alterations have been found in a few of patients with idiopathic SRS. Here, we performed molecular and clinical findings in 138 Japanese SRS patients, and examined these matters. Methodology/Principal Findings We identified H19-DMR epimutation in cases 1–43 (group 1), upd(7)mat in cases 44–52 (group 2), and neither H19-DMR epimutation nor upd(7)mat in cases 53–138 (group 3). Multilocus analysis revealed hyper- or hypomethylated DMRs in 2.4% of examined DMRs in group 1; in particular, an extremely hypomethylated ARHI-DMR was identified in case 13. Oligonucleotide array comparative genomic hybridization identified a ∼3.86 Mb deletion at chromosome 17q24 in case 73. Epigenotype-phenotype analysis revealed that group 1 had more reduced birth length and weight, more preserved birth occipitofrontal circumference (OFC), more frequent body asymmetry and brachydactyly, and less frequent speech delay than group 2. The degree of placental hypoplasia was similar between the two groups. In group 1, the methylation index for the H19-DMR was positively correlated with birth length and weight, present height and weight, and placental weight, but with neither birth nor present OFC. Conclusions/Significance The results are grossly consistent with the previously reported data, although the frequency of epimutations is lower in the Japanese SRS patients than in the Western European SRS patients. Furthermore, the results provide useful information regarding placental hypoplasia in SRS, clinical phenotypes of the hypomethylated ARHI-DMR, and underlying causative factors for idiopathic SRS.


Fertility and Sterility | 2014

Genome-wide copy number analysis and systematic mutation screening in 58 patients with hypogonadotropic hypogonadism

Yoko Izumi; Erina Suzuki; Susumu Kanzaki; Shuichi Yatsuga; Saori Kinjo; Maki Igarashi; Tetsuo Maruyama; Shinichiro Sano; Reiko Horikawa; Naoko Sato; Kazuhiko Nakabayashi; Kenichiro Hata; Akihiro Umezawa; Tsutomu Ogata; Yasunori Yoshimura; Maki Fukami

OBJECTIVE To clarify the molecular basis of hypogonadotropic hypogonadism (HH). DESIGN Genome-wide copy number analysis by array-based comparative genomic hybridization and systematic mutation screening of 29 known causative genes by next-generation sequencing, followed by in silico functional assessment and messenger RNA/DNA analyses of the mutants/variants. SETTING Research institute. PATIENT(S) Fifty-eight patients with isolated HH (IHH), combined pituitary hormone deficiency (CPHD), and syndromic HH. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Frequency and character of molecular abnormalities. RESULT(S) Pathogenic defects were identified in 14 patients with various types of HH, although oligogenicity was not evident in this patient group. As rare abnormalities, we identified a submicroscopic deletion involving FGFR1 and an SOX3 polyalanine deletion in patients with IHH, and a WDR11 splice site mutation in a patient with CPHD. No disease-associated polymorphism was detected in the 58 patients. CONCLUSION(S) The present study provides further evidence that mutations and deletions in the known causative genes play a relatively minor role in the etiology of HH and that submicroscopic rearrangements encompassing FGFR1 can lead to IHH as a sole recognizable clinical feature. Furthermore, the results indicate for the first time that polyalanine deletions in SOX3 and mutations in WDR11 constitute rare genetic causes of IHH and CPHD, respectively.


Endocrinology | 2012

Mamld1 Deficiency Significantly Reduces mRNA Expression Levels of Multiple Genes Expressed in Mouse Fetal Leydig Cells but Permits Normal Genital and Reproductive Development

Mami Miyado; Michiko Nakamura; Kenji Miyado; Ken-ichirou Morohashi; Shinichiro Sano; Eiko Nagata; Maki Fukami; Tsutomu Ogata

Although mastermind-like domain containing 1 (MAMLD1) (CXORF6) on human chromosome Xq28 has been shown to be a causative gene for 46,XY disorders of sex development with hypospadias, the biological function of MAMLD1/Mamld1 remains to be elucidated. In this study, we first showed gradual and steady increase of testicular Mamld1 mRNA expression levels in wild-type male mice from 12.5 to 18.5 d postcoitum. We then generated Mamld1 knockout (KO) male mice and revealed mildly but significantly reduced testicular mRNA levels (65-80%) of genes exclusively expressed in Leydig cells (Star, Cyp11a1, Cyp17a1, Hsd3b1, and Insl3) as well as grossly normal testicular mRNA levels of genes expressed in other cell types or in Leydig and other cell types. However, no demonstrable abnormality was identified for cytochrome P450 17A1 and 3β-hydroxysteroid dehydrogenase (HSD3B) protein expression levels, appearance of external and internal genitalia, anogenital distance, testis weight, Leydig cell number, intratesticular testosterone and other steroid metabolite concentrations, histological findings, in situ hybridization findings for sonic hedgehog (the key molecule for genital tubercle development), and immunohistochemical findings for anti-Müllerian hormone (Sertoli cell marker), HSD3B (Leydig cell marker), and DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 (germ cell marker) in the KO male mice. Fertility was also normal. These findings imply that Mamld1 deficiency significantly reduces mRNA expression levels of multiple genes expressed in mouse fetal Leydig cells but permits normal genital and reproductive development. The contrastive phenotypic findings between Mamld1 KO male mice and MAMLD1 mutation positive patients would primarily be ascribed to species difference in the fetal sex development.


Journal of Pediatric Endocrinology and Metabolism | 2010

Age and Sex Differences in Fat Distribution in Non-Obese Japanese Children

Eiichiro Satake; Yuichi Nakagawa; Akira Kubota; Hirokazu Saegusa; Shinichiro Sano; Takehiko Ohzeki

ABSTRACT Objective: To assess fat distribution in non-obese Japanese children and adolescents. Design: 130 non-obese Japanese children (73 boys and 57 girls) from Kikugawa, Hamamatsu were included. The visceral fat area (VFA) and subcutaneous fat area (SFA) were measured by computed tomography (CT) and calculated (in cm2). Subjects were divided into three groups based on age: group A (6-10 years), group B (11-15 years), and group C (16-20 years). Results: Girls had more subcutaneous fat than boys in groups B and C (P<0.01). Boys had an age-dependent increase in visceral fat, but girls did not. In group C (16-20 years), boys had more visceral fat than girls (P<0.01). Conclusions: In non-obese Japanese children, there are significant differences in visceral and subcutaneous fat amounts by age and sex. VFA seems to accumulate more in boys than in girls, and SFA is more prevalent in girls than boys.


Endocrine Journal | 2015

Growth hormone deficiency in monozygotic twins with autosomal dominant pseudohypoparathyroidism type Ib

Shinichiro Sano; Hiromi Iwata; Keiko Matsubara; Maki Fukami; Masayo Kagami; Tsutomu Ogata

Pseudohypoparathyroidism (PHP) is associated with compromised signal transductions via PTH receptor (PTH-R) and other G-protein-coupled receptors including GHRH-R. To date, while GH deficiency (GHD) has been reported in multiple patients with PHP-Ia caused by mutations on the maternally expressed GNAS coding regions and in two patients with sporadic form of PHP-Ib accompanied by broad methylation defects of maternally derived GNAS differentially methylated regions (DMRs), it has not been identified in a patient with an autosomal dominant form of PHP-Ib (AD-PHP-Ib) accompanied by an STX16 microdeletion and an isolated loss of methylation (LOM) at exon A/B-DMR. We studied 5 4/12-year-old monozygotic twins with short stature (both -3.4 SD) and GHD (peak GH values, <6.0 μg/L after arginine and clonidine stimulations). Molecular studies revealed maternally derived STX16 microdeletions and isolated LOMs at exon A/B-DMR in the twins, confirming the diagnosis of AD-PHP-Ib. GNAS mutation was not identified, and neither mutation nor copy number variation was detected in GH1, POU1F1, PROP1, GHRHR, LHX3, LHX4, and HESX1 in the twins. The results, in conjunction with the previous finding that GNAS shows maternal expression in the pituitary, suggest that GHD of the twins is primarily ascribed to compromised GHRH-R signaling caused by AD-PTH-Ib. Thus, resistance to multiple hormones including GHRH should be considered in AD-PHP-Ib.


Orphanet Journal of Rare Diseases | 2014

Japanese founder duplications/triplications involving BHLHA9 are associated with split-hand/foot malformation with or without long bone deficiency and Gollop-Wolfgang complex

Eiko Nagata; Hiroki Kano; Fumiko Kato; Rie Yamaguchi; Shinichi Nakashima; Shinichiro Takayama; Rika Kosaki; Hidefumi Tonoki; Seiji Mizuno; Satoshi Watanabe; Koh-ichiro Yoshiura; Tomoki Kosho; Tomonobu Hasegawa; Mamori Kimizuka; Atsushi Suzuki; Kenji Shimizu; Hirofumi Ohashi; Nobuhiko Haga; Hironao Numabe; Emiko Horii; Toshiro Nagai; Hiroshi Yoshihashi; Gen Nishimura; Tatsushi Toda; Shuji Takada; Shigetoshi Yokoyama; Hiroshi Asahara; Shinichiro Sano; Maki Fukami; Shiro Ikegawa

BackgroundLimb malformations are rare disorders with high genetic heterogeneity. Although multiple genes/loci have been identified in limb malformations, underlying genetic factors still remain to be determined in most patients.MethodsThis study consisted of 51 Japanese families with split-hand/foot malformation (SHFM), SHFM with long bone deficiency (SHFLD) usually affecting the tibia, or Gollop-Wolfgang complex (GWC) characterized by SHFM and femoral bifurcation. Genetic studies included genomewide array comparative genomic hybridization and exome sequencing, together with standard molecular analyses.ResultsWe identified duplications/triplications of a 210,050 bp segment containing BHLHA9 in 29 SHFM patients, 11 SHFLD patients, two GWC patients, and 22 clinically normal relatives from 27 of the 51 families examined, as well as in 2 of 1,000 Japanese controls. Families with SHFLD- and/or GWC-positive patients were more frequent in triplications than in duplications. The fusion point was identical in all the duplications/triplications and was associated with a 4 bp microhomology. There was no sequence homology around the two breakpoints, whereas rearrangement-associated motifs were abundant around one breakpoint. The rs3951819-D17S1174 haplotype patterns were variable on the duplicated/triplicated segments. No discernible genetic alteration specific to patients was detected within or around BHLHA9, in the known causative SHFM genes, or in the exome.ConclusionsThese results indicate that BHLHA9 overdosage constitutes the most frequent susceptibility factor, with a dosage effect, for a range of limb malformations at least in Japan. Notably, this is the first study revealing the underlying genetic factor for the development of GWC, and demonstrating the presence of triplications involving BHLHA9. It is inferred that a Japanese founder duplication was generated through a replication-based mechanism and underwent subsequent triplication and haplotype modification through recombination-based mechanisms, and that the duplications/triplications with various haplotypes were widely spread in Japan primarily via clinically normal carriers and identified via manifesting patients. Furthermore, genotype-phenotype analyses of patients reported in this study and the previous studies imply that clinical variability is ascribed to multiple factors including the size of duplications/triplications as a critical factor.


Genetics in Medicine | 2017

Genome-wide multilocus imprinting disturbance analysis in Temple syndrome and Kagami-Ogata syndrome

Masayo Kagami; Keiko Matsubara; Kazuhiko Nakabayashi; Akie Nakamura; Shinichiro Sano; Kohji Okamura; Kenichiro Hata; Maki Fukami; Tsutomu Ogata

Purpose:Recent studies have identified multilocus imprinting disturbances (MLIDs) in a subset of patients with imprinting diseases (IDs) caused by epimutations. We examined MLIDs in patients with Temple syndrome (TS14) and Kagami-Ogata syndrome (KOS14).Methods:We studied four TS14 patients (patients 1–4) and five KOS14 patients (patients 5–9) with epimutations. We performed HumanMethylation450 BeadChip (HM450k) analysis for 43 differentially methylated regions (DMRs) (753 CpG sites) and pyrosequencing for 12 DMRs (62 CpG sites) using leukocyte genomic DNA (Leu-gDNA) of patients 1–9, and performed HM450k analysis for 43 DMRs (a slightly different set of 753 CpG sites) using buccal cell gDNA (Buc-gDNA) of patients 1, 3, and 4. We also performed mutation analysis for six causative and candidate genes for MLIDs and quantitative expression analysis using immortalized lymphocytes in MLID-positive patients.Results:Methylation analysis showed hypermethylated ZDBF2-DMR and ZNF597/NAA60-DMR, hypomethylated ZNF597-DMR in both Leu-gDNA and Buc-gDNA, and hypomethylated PPIEL-DMR in Buc-gDNA of patient 1, and hypermethylated GNAS-A/B-DMR in Leu-gDNA of patient 3. No mutations were detected in the six genes for MLIDs. Expression patterns of ZDBF2, ZNF597, and GNAS-A/B were consistent with the identified MLIDs.Conclusion:This study indicates the presence of MLIDs in TS14 patients but not in KOS14 patients.Genet Med 19 4, 476–482.


Hormone and Metabolic Research | 2010

Effects of maternal high-fat diet on serum lipid concentration and expression of peroxisomal proliferator-activated receptors in the early life of rat offspring.

Rie Yamaguchi; Yuichi Nakagawa; Y. Liu; Yasuko Fujisawa; Shuji Sai; Eiko Nagata; Shinichiro Sano; Eiichiro Satake; Rie Matsushita; Toshiki Nakanishi; Karen E. Chapman; Jonathan R. Seckl; Takehiko Ohzeki

Peroxisomal proliferator-activated receptors (PPARs) play an important role in the regulation of lipid metabolism. The aim of this study was to investigate the effects of a maternal high-fat (HF) diet on serum lipid concentration and PPAR gene expression in liver and adipose tissue in the early life of the rat offspring. Female Sprague-Dawley rats were fed either an HF or control (CON) diet 6 weeks before mating and throughout gestation and lactation. Blood and tissue samplings of male offspring were carried out at birth or weaning. Birth weights were similar and serum triglyceride (TG) and nonesterified fatty acid (NEFA) levels showed no significant difference between HF and CON newborns, despite greatly increased hepatic PPARα mRNA expression in the HF newborns (p<0.05). Both HF newborns and weanlings revealed significantly decreased hepatic PPARγ expression compared with controls (p<0.0001). Hepatic PPARα expression in the HF weanlings was reduced markedly compared with CON weanlings (p<0.0001) and showed a negative correlation with serum TG levels (r=-0.743, p<0.05). However, epididymal expression of PPARγ in the HF weanlings was upregulated significantly compared with controls (p<0.05) and demonstrated a positive correlation with epididymal fat mass (r=0.733, p<0.05). These were accompanied by obesity as well as a rise in serum TG by 79% (p<0.05) and NEFA concentration by 36% (p<0.05) in these HF weanlings. Our findings suggest that maternal HF diet leads to alterations in PPAR gene expression in the weanling offspring, which is associated with the disturbed lipid homeostasis.


Hormone and Metabolic Research | 2012

Carbenoxolone Alters the Morphology of Adipose Tissues and Downregulates Genes Involved in Adipogenesis, Glucose Transport and Lipid Metabolism in High-Fat Diet-fed Mice

Shinichiro Sano; Yuichi Nakagawa; Rie Yamaguchi; Yasuko Fujisawa; Eiichiro Satake; Eiko Nagata; Toshiki Nakanishi; Y.-J. Liu; Takehiko Ohzeki

Glucocorticoid (GC) excess promotes adipose tissue accumulation, and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) plays an important role in the local amplification of GC. Therefore, in this study, we investigated the effects of carbenoxolone (CBX), an 11β-HSD1 inhibitor, on morphological changes in visceral fat, and the expression of genes involved in adipogenesis and lipid metabolism in high-fat (HF) diet-fed mice. Mice were fed a HF diet from 5 weeks of age. At 10 weeks of age, the mice received an intraperitoneal injection of CBX or vehicle every day for 2 weeks. CBX decreased body weight and visceral fat mass, and improved insulin sensitivity in HF-fed mice. This was accompanied by reduced adipocyte size and a decrease in large-sized adipocytes in visceral fat. The expression of adipogenesis (PPARγ and C/EBPα), glucose transport (GLUT4) and lipid metabolism (LPL, ATGL, and HSL)-related genes were suppressed in CBX mice. CBX treatment induced beneficial morphological changes in visceral fat and decreased the expression of adipogenesis, glucose transport and lipid metabolism-related genes. These findings reveal a potential mechanism underling the effects of CBX on reduced fat accumulation and improved insulin sensitivity.

Collaboration


Dive into the Shinichiro Sano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maki Fukami

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Keiko Matsubara

Dokkyo Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuhiko Nakabayashi

Tokyo Medical and Dental University

View shared research outputs
Researchain Logo
Decentralizing Knowledge