Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shinichiro Sawa is active.

Publication


Featured researches published by Shinichiro Sawa.


Immunity | 2008

Microbial Flora Drives Interleukin 22 Production in Intestinal NKp46+ Cells that Provide Innate Mucosal Immune Defense

Naoko Satoh-Takayama; Christian A. J. Vosshenrich; Sarah Lesjean-Pottier; Shinichiro Sawa; Matthias Lochner; Frédérique Rattis; Jean-Jacques Mention; Kader Thiam; Nadine Cerf-Bensussan; Ofer Mandelboim; Gérard Eberl; James P. Di Santo

Natural killer (NK) cells are innate lymphocytes with spontaneous antitumor activity, and they produce interferon-gamma (IFN-gamma) that primes immune responses. Whereas T helper cell subsets differentiate from naive T cells via specific transcription factors, evidence for NK cell diversification is limited. In this report, we characterized intestinal lymphocytes expressing the NK cell natural cytotoxicity receptor NKp46. Gut NKp46+ cells were distinguished from classical NK cells by limited IFN-gamma production and absence of perforin, whereas several subsets expressed the nuclear hormone receptor retinoic acid receptor-related orphan receptor t (RORgammat) and interleukin-22 (IL-22). Intestinal NKp46+IL-22+ cells were generated via a local process that was conditioned by commensal bacteria and required RORgammat. Mice lacking IL-22-producing NKp46+ cells showed heightened susceptibility to the pathogen Citrobacter rodentium, consistent with a role for intestinal NKp46+ cells in immune protection. RORgammat-driven diversification of intestinal NKp46+ cells thereby specifies an innate cellular defense mechanism that operates at mucosal surfaces.


Journal of Experimental Medicine | 2008

In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORγt+ T cells

Matthias Lochner; Lucie Peduto; Marie Cherrier; Shinichiro Sawa; Francina Langa; Rosa Varona; Dieter Riethmacher; Mustapha Si-Tahar; James P. Di Santo; Gérard Eberl

The nuclear hormone receptor retinoic acid receptor–related orphan receptor γt (RORγt) is required for the generation of T helper 17 cells expressing the proinflammatory cytokine interleukin (IL)-17. In vivo, however, less than half of RORγt+ T cells express IL-17. We report here that RORγt+ Tαβ cells include Foxp3+ cells that coexist with IL-17–producing RORγt+ Tαβ cells in all tissues examined. The Foxp3+ RORγt+ Tαβ express IL-10 and CCL20, and function as regulatory T cells. Furthermore, the ratio of Foxp3+ to IL-17–producing RORγt+ Tαβ cells remains remarkably constant in mice enduring infection and inflammation. This equilibrium is tuned in favor of IL-10 production by Foxp3 and CCL20, and in favor of IL-17 production by IL-6 and IL-23. In the lung and skin, the largest population of RORγt+ T cells express the γδ T cell receptor and produce the highest levels of IL-17 independently of IL-6. Thus, potentially antagonistic proinflammatory IL-17–producing and regulatory Foxp3+ RORγt+ T cells coexist and are tightly controlled, suggesting that a perturbed equilibrium in RORγt+ T cells might lead to decreased immunoreactivity or, in contrast, to pathological inflammation.


Journal of Immunology | 2004

IL-6 Regulates In Vivo Dendritic Cell Differentiation through STAT3 Activation

Sung-Joo Park; Takayuki Nakagawa; Hidemitsu Kitamura; Toru Atsumi; Hokuto Kamon; Shinichiro Sawa; Daisuke Kamimura; Naoko Ueda; Yoichiro Iwakura; Katsuhiko Ishihara; Masaaki Murakami; Toshio Hirano

Dendritic cells (DCs) orchestrate immune responses according to their state of maturation. In response to infection, DCs differentiate into mature cells that initiate immune responses, while in the absence of infection, most of them remain in an immature form that induces tolerance to self Ags. Understanding what controls these opposing effects is an important goal for vaccine development and prevention of unwanted immune responses. A crucial question is what cytokine(s) regulates DC maturation in the absence of infection. In this study, we show that IL-6 plays a major role in maintaining immature DCs. IL-6 knockout (KO) mice had increased numbers of mature DCs, indicating that IL-6 blocks DC maturation in vivo. We examined this effect further in knockin mice expressing mutant versions of the IL-6 signal transducer gp130, with defective signaling through either Src homology region 2 domain-containing phosphatase 2/Gab/MAPK (gp130F759/F759) or STAT3 (gp130FxxQ/FxxQ), and combined gp130 and IL-6 defects (gp130F759/F759/IL-6 KO mice). Importantly, we found STAT3 activation by IL-6 was required for the suppression of LPS-induced DC maturation. In addition, STAT3 phosphorylation in DCs was regulated by IL-6 in vivo, and STAT3 was necessary for the IL-6 suppression of bone marrow-derived DC activation/maturation. DC-mediated T cell activation was enhanced in IL-6 KO mice and suppressed in gp130F759/F759 mice. IL-6 is thus a potent regulator of DC differentiation in vivo, and IL-6-gp130-STAT3 signaling in DCs may represent a critical target for controlling T cell-mediated immune responses in vivo.


Science | 2010

Lineage Relationship Analysis of RORγt+ Innate Lymphoid Cells

Shinichiro Sawa; Marie Cherrier; Matthias Lochner; Naoko Satoh-Takayama; Hans Joerg Fehling; Francina Langa; James P. Di Santo; Gérard Eberl

Innate Innit? Innate lymphocytes (ILCs) are a recently described population of immune cells that produce cytokines like those associated with T helper cells, but lack the recombined antigen receptors characteristic of T cells. Again, like some T helper cell lineages, a proportion of ILCs express the transcription factor RORγt. These include lymphoid tissue inducer (LTi) cells required for fetal lymphoid tissue organogenesis and a population of natural killer (NK)–like cells that function in gut immune responses. Sawa et al. (p. 665; see the Perspective by Veldhoen and Withers) wondered whether the RORγt-expressing ILCs all develop from the same progenitor population. Indeed, they found a fetal liver progenitor that gave rise to several phenotypically distinct populations. However, the LTi cells were not progenitors for the NK-like cells. It seems the trajectory of different ILC populations is developmentally regulated, and postnatally ILCs are favored that play a role in intestinal defense before the gut is fully colonized by intestinal microbiota. Immune cells develop to preempt intestinal colonization by microbial symbionts. Lymphoid tissue–inducer (LTi) cells initiate the development of lymphoid tissues through the activation of local stromal cells in a process similar to inflammation. LTi cells express the nuclear hormone receptor RORγt, which also directs the expression of the proinflammatory cytokine interleukin-17 in T cells. We show here that LTi cells are part of a larger family of proinflammatory RORγt+ innate lymphoid cells (ILCs) that differentiate from distinct fetal liver RORγt+ precursors. The fate of RORγt+ ILCs is determined by mouse age, and after birth, favors the generation of cells involved in intestinal homeostasis and defense. Contrary to RORγt+ T cells, however, RORγt+ ILCs develop in the absence of microbiota. Our study indicates that RORγt+ ILCs evolve to preempt intestinal colonization by microbial symbionts.


Journal of Experimental Medicine | 2010

IL-7 and IL-15 independently program the differentiation of intestinal CD3−NKp46+ cell subsets from Id2-dependent precursors

Naoko Satoh-Takayama; Sarah Lesjean-Pottier; Paulo Vieira; Shinichiro Sawa; Gérard Eberl; Christian A. J. Vosshenrich; James P. Di Santo

The natural cytotoxicity receptor NKp46 (encoded by Ncr1) was recently shown to identify a subset of noncytotoxic, Rag-independent gut lymphocytes that express the transcription factor Rorc, produce interleukin (IL)-22, and provide innate immune protection at the intestinal mucosa. Intestinal CD3−NKp46+ cells are phenotypically heterogeneous, comprising a minority subset that resembles classical mature splenic natural killer (NK) cells (NK1.1+, Ly49+) but also a large CD127+NK1.1− subset of lymphoid tissue inducer (LTi)–like Rorc+ cells that has been proposed to include NK cell precursors. We investigated the developmental relationships between these intestinal CD3−NKp46+ subsets. Gut CD3−NKp46+ cells were related to LTi and NK cells in requiring the transcriptional inhibitor Id2 for normal development. Overexpression of IL-15 in intestinal epithelial cells expanded NK1.1+ cells within the gut but had no effect on absolute numbers of the CD127+NK1.1−Rorc+ subset of CD3−NKp46+ cells. In contrast, IL-7 deficiency strongly reduced the overall numbers of CD3−NKp46+NK1.1− cells that express Rorc and produce IL-22 but failed to restrict homeostasis of classical intestinal NK1.1+ cells. Finally, in vivo fate-mapping experiments demonstrated that intestinal NK1.1+CD127− cells are not the progeny of Rorc-expressing progenitors, indicating that CD127+NK1.1−Rorc+ cells are not canonical NK cell precursors. These studies highlight the independent cytokine regulation of functionally diverse intestinal NKp46+ cell subsets.


Journal of Experimental Medicine | 2012

Notch, Id2, and RORγt sequentially orchestrate the fetal development of lymphoid tissue inducer cells

Marie Cherrier; Shinichiro Sawa; Gérard Eberl

Notch signaling is required for the generation of α4β7+RORγt− fetal progenitors, but must then be turned off to allow RORγt expression and LTi cell maturation.


Journal of Experimental Medicine | 2006

Autoimmune arthritis associated with mutated interleukin (IL)-6 receptor gp130 is driven by STAT3/IL-7–dependent homeostatic proliferation of CD4+ T cells

Shinichiro Sawa; Daisuke Kamimura; Gui-Hua Jin; Hideyuki Morikawa; Hokuto Kamon; Mika Nishihara; Katsuhiko Ishihara; Masaaki Murakami; Toshio Hirano

Mice homozygous for the F759 mutation in the gp130 interleukin (IL)-6 receptor subunit have enhanced gp130-mediated signal transducer and activator of transcription (STAT)3 activation and spontaneously developed a lymphocyte-mediated rheumatoid arthritis-like joint disease. Here, we show that the development of the disease is dependent on both major histocompatibility complex (MHC) II–restricted CD4+ T cells and IL-6 family cytokines. In spite of the necessity for CD4+ T cells, the gp130 mutation was only required in nonhemtopoietic cells for the disease. The gp130 mutation resulted in enhanced production of IL-7. Conditional knockout of STAT3 in nonlymphoid cells showed that the enhancement of IL-7 production was dependent on STAT3 activation by IL-6 family cytokines. Homeostatic proliferation of CD4+ T cells was enhanced in gp130 mutant mice and acceleration of homeostatic proliferation enhanced the disease, whereas the inhibition of homeostatic proliferation suppressed the disease. Anti–IL-7 antibody treatment inhibited not only the enhanced homeostatic proliferation, but also the disease in gp130 mutant mice. Thus, our results show that autoimmune disease in gp130 mutant mice is caused by increased homeostatic proliferation of CD4+ T cells, which is due to elevated production of IL-7 by nonhematopoietic cells as a result of IL-6 family cytokine-gp130-STAT3 signaling.


Journal of Experimental Medicine | 2011

Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORγt and LTi cells

Matthias Lochner; Caspar Ohnmacht; Laura Presley; Pierre Bruhns; Mustapha Si-Tahar; Shinichiro Sawa; Gérard Eberl

Microbiota drive tertiary lymphoid tissue formation in mice lacking the nuclear hormone receptor Rorγt, leading to intestinal inflammation and wasting disease.


Journal of Immunology | 2011

Restricted Microbiota and Absence of Cognate TCR Antigen Leads to an Unbalanced Generation of Th17 Cells

Matthias Lochner; Marion Bérard; Shinichiro Sawa; Siona Hauer; Valérie Gaboriau-Routhiau; Tahia Fernandez; Johannes Snel; Philippe Bousso; Nadine Cerf-Bensussan; Gérard Eberl

Retinoic acid-related orphan receptor (ROR)γt+ TCRαβ+ cells expressing IL-17, termed Th17 cells, are most abundant in the intestinal lamina propria. Symbiotic microbiota are required for the generation of Th17 cells, but the requirement for microbiota-derived Ag is not documented. In this study, we show that normal numbers of Th17 cells develop in the intestine of mice that express a single TCR in the absence of cognate Ag, whereas the microbiota remains essential for their development. However, such mice, or mice monocolonized with the Th17-inducing segmented filamentous bacteria, fail to induce normal numbers of Foxp3+ RORγt+ T cells, the regulatory counterpart of IL-17+RORγt+ T cells. These results demonstrate that a complex microbiota and cognate Ag are required to generate a properly regulated set of RORγt+ T cells and Th17 cells.


Cellular Microbiology | 2011

Intestinal microbiota, evolution of the immune system and the bad reputation of pro-inflammatory immunity

Caspar Ohnmacht; Rute Marques; Laura Presley; Shinichiro Sawa; Matthias Lochner; Gérard Eberl

The mammalian intestine provides a unique niche for a large community of bacterial symbionts that complements the host in digestive and anabolic pathways, as well as in protection from pathogens. Only a few bacterial phyla have adapted to this predominantly anaerobic environment, but hundreds of different species create an ecosystem that affects many facets of the hosts physiology. Recent data show how particular symbionts are involved in the maturation of the immune system, in the intestine and beyond, and how dysbiosis, or alteration of that community, can deregulate immunity and lead to immunopathology. The extensive and dynamic interactions between the symbionts and the immune system are key to homeostasis and health, and require all the blends of so‐called regulatory and pro‐inflammatory immune reactions. Unfortunately, pro‐inflammatory immunity leading to the generation of Th17 cells has been mainly associated with its role in immunopathology. Here we discuss the view that the immune system in general, and type 17 immunity in particular, develop to maintain the equilibrium of the host with its symbionts.

Collaboration


Dive into the Shinichiro Sawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge