Shinichiro Suto
Hirosaki University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shinichiro Suto.
Oncology Letters | 2016
Eri Yoshida; Daisuke Kudo; Hayato Nagase; Hiroshi Shimoda; Shinichiro Suto; Mika Negishi; Ikuko Kakizaki; Masahiko Endo; Kenichi Hakamada
Hyaluronan (HA) is a major component of the extracellular matrix (ECM), and influences tumor invasion and metastasis. In a previous study, the present authors reported for the first time that 4-methylumbelliferone (MU) inhibited HA synthesis and suppressed tumor growth. However, the localization of HA and the changes in ECM morphology caused by MU in pancreatic cancer remain to be examined in detail. In the present study, the cytotoxicity of MU and its effect on cellular proliferation was evaluated in the human pancreatic cancer cell line MIA PaCa-2. The amount of HA synthesized and the retention of HA around the cells were quantitatively and immunohistochemically analyzed in vitro and in vivo. Structural changes in the ECM in the tumor tissue were investigated using an electron microscope. MU treatment led to a decrease in extracellular HA retention, as evidenced by a particle exclusion assay and immunohistochemical staining. Cell proliferation was suppressed by MU in a dose-dependent manner. The release of lactate dehydrogenase into the culture medium due to damage to the cellular membrane did not increase following MU administration. In tumor-inoculated mice, MU suppressed any increase in tumor volume and decreased the quantity of HA. Electron microscopy revealed that MU attenuated the intercellular space and caused it to be less cohesive. These data indicate that MU inhibits HA synthesis and reduces the amount of HA in the ECM while exhibiting no obvious cytotoxic effect. These findings suggest that MU has potential as a novel therapeutic agent for pancreatic cancer.
Glycobiology | 2013
Yota Tatara; Ikuko Kakizaki; Yoshiyuki Kuroda; Shinichiro Suto; Haruna Ishioka; Masahiko Endo
Chum salmon (Oncorhynchus keta) nasal cartilage was examined by next-generation DNA sequencing and mass spectrometric analyses, and 14 types of proteoglycans including epiphycan (EPY) were found. A cDNA encoding EPY was cloned and sequenced. The cDNA encoded 589 amino acids comprised a glycosaminoglycan (GAG) domain containing 55 potential GAG-modified sites (Ser-Gly and/or Gly-Ser), a cysteine cluster and 6 leucine-rich repeats. EPY was purified from salmon nasal cartilage and the structure of the GAG was characterized. As a result of unsaturated disaccharide analysis, GAG was found to be composed of chondroitin 6-sulfate (58.0%), chondroitin 4-sulfate (26.5%) and non-sulfated chondroitin (15.3%). The average molecular weight of GAG was estimated to be 3.0 × 10(4). Ser-100 and Ser-103 were identified as serine residues substituted by GAG chains by chemical modification and mass spectrometric analysis. More than 50 serine residues were assumed to be substituted by GAG chains. EPY is heavily substituted by chondroitin sulfate, giving an overall molecular weight of just under 2 × 10(6). EPY from salmon nasal cartilage is a novel type of large leucine-rich proteoglycan.
Biochemical and Biophysical Research Communications | 2011
Ikuko Kakizaki; Isoshi Nukatsuka; Keiichi Takagaki; Mitsuo Majima; Mito Iwafune; Shinichiro Suto; Masahiko Endo
Glycosaminoglycans were prepared as salts of different divalent cations and tested as donors in bovine testicular hyaluronidase catalyzed transglycosylation reactions. All of the metal cations examined had similar binding efficiency of divalent cations to hyaluronan. However, cations bound with different efficiencies to chondroitin sulfate species and the differences were marked in the case of chondroitin 6-sulfate; the numbers of cations bound per disaccharide unit were estimated to be 0.075 for Mn, 1.231 for Ba, 0.144 for Zn, and 0.395 for Cu. While barium salt of chondroitin sulfates enhanced transglycosylation, the zinc salt of chondroitin sulfates inhibited transglycosylation. Therefore, by selecting the proper divalent cation salt of chondroitin sulfates as a donor in the transglycosylation reaction it is possible to improve the yields of the products.
Pancreas | 2017
Hayato Nagase; Daisuke Kudo; Akiko Suto; Eri Yoshida; Shinichiro Suto; Mika Negishi; Ikuko Kakizaki; Kenichi Hakamada
Objectives Pancreatic ductal adenocarcinoma contains large amounts of the glycosaminoglycan hyaluronan (HA), which is involved in various physiological processes. Here, we aimed to clarify the anticancer mechanisms of 4-methylumbelliferone (MU), a well-known HA synthesis inhibitor. Methods MIA PaCa-2 human pancreatic cancer cells were used. We evaluated cellular proliferation, migration, and invasion in the presence of MU, exogenous HA, and an anti-CD44 antibody. We also analyzed apoptosis, CD44 expression, and HA-binding ability using flow cytometry. The HA content in tumor tissue was quantified and histopathologically investigated in mice who had been inoculated with cancer cells. Results In vitro, MU inhibited pericellular HA matrix formation; however, HAS3 mRNA was up-regulated. Treatment with 0.5 mM MU suppressed cellular proliferation by 26.4%, migration by 14.7%, and invasion by 22.7%. Moreover, MU also significantly increased apoptosis. CD44 expression and HA-binding ability were not altered by MU. In vivo, MU suppressed HA accumulation in pancreatic tumors and improved survival times in tumor-bearing mice. Conclusions 4-Methylumbelliferone indirectly caused apoptosis in pancreatic cancer cells by inhibiting HA production. 4-Methylumbelliferone may be a promising agent in the treatment of pancreatic cancer.
Glycobiology | 2015
Yota Tatara; Ikuko Kakizaki; Shinichiro Suto; Haruna Ishioka; Mika Negishi; Masahiko Endo
Epiphycan (EPY) from salmon nasal cartilage has a glycosaminoglycan (GAG) domain that is heavily modified by chondroitin 4-sulfate and chondroitin 6-sulfate. The functional role of the GAG domain has not been investigated. The interaction of EPY with collagen was examined in vitro using surface plasmon resonance analysis. EPY was found to bind to type I collagen via clustered chondroitin sulfate (CS), while a single chain of CS was unable to bind. Types I, III, VII, VIII and X collagen showed high binding affinity with EPY, whereas types II, IV, V, VI and IX showed low binding affinities. Chemical modification of lysine residues in collagen decreased the affinity with the clustered CS. These results suggest that lysine residues of collagen are involved in the interaction with the clustered CS, and the difference in lysine modification defines the binding affinity to EPY. The clustered CS was also involved in an inter-saccharide interaction, and formed self-associated EPY. CS of EPY promoted fibril formation of type I collagen.
Biochemical and Biophysical Research Communications | 2012
Ikuko Kakizaki; Shinichiro Suto; Yota Tatara; Toshiya Nakamura; Masahiko Endo
Hyaluronan and chondroitin are glycosaminoglycans well-known as components of pharmaceutical agents and health foods. From these attractive molecules, using transglycosylation reaction of testicular hyaluronidase, we synthesized hybrid neo-oligosaccharides not found in nature. We also found a new site between the chondroitin disaccharide unit and hyaluronan disaccharide unit recognized by a hyaluronan lyase specific to hyaluronan using these hybrid oligosaccharides as substrates. We hope that these hybrid oligosaccharides will help to elucidate the involvement of hyaluronan, chondroitin, and chondroitin sulfates in the mechanisms of cell functions and diseases, based on the structures of these glycosaminoglycans.
Glycobiology | 2017
Yota Tatara; Shinichiro Suto; Ken Itoh
Glycosaminoglycans (GAGs) and collagen are the major organic components of bone matrix. However, their roles and functional relationships remain elusive. To investigate the role of GAGs in bone matrix degradation, the effects of GAGs on collagen were examined under acidic conditions that recapitulate the microenvironment of osteoclast resorption pits. We found that sulfated GAGs protect collagen fibrils against acid denaturation. Scanning electron microscopy demonstrated that collagen fibrils retain the fibril structure at pH 4.0 in the presence of chondroitin 6-sulfate. By surface plasmon resonance analysis, we found that sulfated GAGs, but not non-sulfated GAGs, bind to triple-helix type I collagen below pH 4.5. The binding of collagen in an acidic solution was dependent upon the GAG sugar chain length. Functionally, the acid-resistant collagen fibrils generated in the presence of sulfated GAGs were resistant to cathepsin K degradation in vitro below pH 4.0. As the pH increased from 4.0 to 5.0, the acid-resistant collagen fibrils were degraded by cathepsin K. Our results highlight the possibility that the interaction between GAGs and collagen under acidic conditions has a regulatory impact on cathepsin K-mediated bone degradation.
Biopolymers | 2014
Shinichiro Suto; Ikuko Kakizaki; Toshiya Nakamura; Masahiko Endo
Using the transglycosylation reaction as a reverse reaction for the hydrolysis of hyaluronidase, new artificial oligosaccharides may be synthesized by reconstructing natural glycosaminoglycans (GAGs) according to preliminary planned arrangements. However, as some problems have been associated with the method, including the low yields of reaction products and complicated processes of separation and purification, improvements in this method were investigated. Transglycosylation reactions were carried out using bovine testicular hyaluronidase-immobilized resin packed in a column. For the transglycosylation reaction, pyridylaminated (PA) GAG hexasaccharides, which were the minimum size for hydrolysis sensitivity and the transglycosylation reaction, were used as acceptors, whereas large size GAGs were used as donors. The reaction mixture was pooled after incubation in the hyaluronidase-immobilized resin column and was then introduced into continuously joined HPLC columns constructed from three steps: the first step of ion-exchange HPLC for concentrating newly synthesized GAG oligosaccharides as reaction products, the second step of reverse phase HPLC for separating PA oligosaccharides from non-PA oligosaccharides, and the third step of size fractionation HPLC for fractionating newly synthesized oligosaccharides. Newly synthesized oligosaccharides were obtained by one complete cycle of the transglycosylation reaction and separation.
Anticancer Research | 2018
Eri Yoshida; Daisuke Kudo; Hayato Nagase; Akiko Suto; Hiroshi Shimoda; Shinichiro Suto; Ikuko Kakizaki; Masahiko Endo; Kenichi Hakamada
Background/Aim: Pancreatic cancer responds poorly to most chemotherapeutic agents. Several studies have reported that hyaluronan (HA)-rich extracellular matrix (ECM) is a biological barrier against chemotherapeutic agents. 4-methylumbelliforone (MU) led to inhibition of HA synthesis and its preservation in ECM, which may enhance 5-fluorouracil (5-FU) cytotoxicity. Thus, new therapy with MU and 5-FU may be developed for pancreatic cancer. Materials and Methods: A 5-fluorouracil (5-FU) concentration and 4-methylumbelliferone (MU) dosage was analyzed by high-performance liquid chromatography (HPLC). Change in antitumor efficacy of 5-FU in combination with MU was also examined in vivo and in vitro. Results: Combined 5-FU and MU treatment inhibited cell proliferation better than 5-FU alone; 0.01 mM 5-FU alone decreased cell proliferation by 37.7 %, while 0.01 mM 5-FU with 0.5 mM MU decreased cell proliferation by 57.4%. MU enhanced the intracellular concentration of 5-FU by 47.3% compared to control. Mice tumors treated with 5-FU and MU decreased in size and animal survival was prolonged. Moreover, MU decreased cohesiveness of the intercellular space. Conclusion: Combination therapy of 5-FU with MU was effective. A novel therapy can be designed for pancreatic cancer by using ECM modulation.
Bioscience, Biotechnology, and Biochemistry | 2015
Yota Tatara; Shinichiro Suto; Yoshitaka Sasaki; Masahiko Endo
Salmon nasal cartilage was micronized in ethanol using a rotor–stator homogenizer for the high yield of proteoglycan extraction. This procedure also brought about depressing the degradation of proteoglycan and the contamination of collagens. Proteoglycan was extracted by 4 M magnesium chloride and isolated by anion-exchange chromatography. The gel filtration HPLC and the antibody reactivity showed that the core protein was intact.