Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shinji Kondo is active.

Publication


Featured researches published by Shinji Kondo.


Nature | 2001

Functional annotation of a full-length mouse cDNA collection

Jun Kawai; Akira Shinagawa; Kazuhiro Shibata; Masataka Yoshino; Masayoshi Itoh; Yoshiyuki Ishii; Takahiro Arakawa; Ayako Hara; Yoshifumi Fukunishi; Hideaki Konno; Jun Adachi; Shiro Fukuda; Katsunori Aizawa; Masaki Izawa; Kenichiro Nishi; Hidenori Kiyosawa; Shinji Kondo; Itaru Yamanaka; Tsuyoshi Saito; Yasushi Okazaki; Takashi Gojobori; Hidemasa Bono; Takeya Kasukawa; R. Saito; Koji Kadota; Hideo Matsuda; Michael Ashburner; Serge Batalov; Tom L. Casavant; W. Fleischmann

The RIKEN Mouse Gene Encyclopaedia Project, a systematic approach to determining the full coding potential of the mouse genome, involves collection and sequencing of full-length complementary DNAs and physical mapping of the corresponding genes to the mouse genome. We organized an international functional annotation meeting (FANTOM) to annotate the first 21,076 cDNAs to be analysed in this project. Here we describe the first RIKEN clone collection, which is one of the largest described for any organism. Analysis of these cDNAs extends known gene families and identifies new ones.The RIKEN Mouse Gene Encyclopaedia Project, a systematic approach to determining the full coding potential of the mouse genome, involves collection and sequencing of full-length complementary DNAs and physical mapping of the corresponding genes to the mouse genome. We organized an international functional annotation meeting (FANTOM) to annotate the first 21,076 cDNAs to be analysed in this project. Here we describe the first RIKEN clone collection, which is one of the largest described for any organism. Analysis of these cDNAs extends known gene families and identifies new ones.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage

Toshiyuki Shiraki; Shinji Kondo; Shintaro Katayama; Kazunori Waki; Takeya Kasukawa; Hideya Kawaji; Rimantas Kodzius; Akira Watahiki; Mari Nakamura; Takahiro Arakawa; Shiro Fukuda; Daisuke Sasaki; Anna Podhajska; Matthias Harbers; Jun Kawai; Piero Carninci; Yoshihide Hayashizaki

We introduce cap analysis gene expression (CAGE), which is based on preparation and sequencing of concatamers of DNA tags deriving from the initial 20 nucleotides from 5′ end mRNAs. CAGE allows high-throughout gene expression analysis and the profiling of transcriptional start points (TSP), including promoter usage analysis. By analyzing four libraries (brain, cortex, hippocampus, and cerebellum), we redefined more accurately the TSPs of 11-27% of the analyzed transcriptional units that were hit. The frequency of CAGE tags correlates well with results from other analyses, such as serial analysis of gene expression, and furthermore maps the TSPs more accurately, including in tissue-specific cases. The high-throughput nature of this technology paves the way for understanding gene networks via correlation of promoter usage and gene transcriptional factor expression.


Chromosome Research | 2006

HISTONE H3 ACETYLATED AT LYSINE 9 IN PROMOTER IS ASSOCIATED WITH LOW NUCLEOSOME DENSITY IN THE VICINITY OF TRANSCRIPTION START SITE IN HUMAN CELL

Hiromi Nishida; Takahiro Suzuki; Shinji Kondo; Hisashi Miura; Yu-ichi Fujimura; Yoshihide Hayashizaki

Nucleosome depletion in the promoters has been indicated in yeasts, suggesting that nucleosome depletion in promoter might be a fundamental feature of eukaryotic transcriptional regulation. We compared the relationship between histone H3 acetylation at lysine 9 (K9) in promoter, gene expression level, and nucleosome density in the vicinity of the transcription start site (TSS), in HepG2 cells (human hepatocellular liver carcinoma cells). We found that the density of nucleosome is relatively low in the close vicinity of TSS flanked by H3 K9 significantly acetylated promoter, compared with that for genes without marked H3 K9 acetylation in promoter, regardless of their transcriptional activation status. Our results imply that the relative nucleosome depletion in the vicinity of TSS is not necessarily associated with active transcription, but with histone H3 K9 acetylation in promoter.


Nature Methods | 2004

Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas

Akira Watahiki; Kazunori Waki; Norihito Hayatsu; Toshiyuki Shiraki; Shinji Kondo; Mari Nakamura; Daisuke Sasaki; Takahiro Arakawa; Jun Kawai; Matthias Harbers; Yoshihide Hayashizaki; Piero Carninci

It is becoming increasingly clear that alternative splicing enables the complex development and homeostasis of higher organisms. To gain a better understanding of how splicing contributes to regulatory pathways, we have developed an alternative splicing library approach for the identification of alternatively spliced exons and their flanking regions by alternative splicing sequence enriched tags sequencing. Here, we have applied our approach to mouse melan-c melanocyte and B16-F10Y melanoma cell lines, in which 5,401 genes were found to be alternatively spliced. These genes include those encoding important regulatory factors such as cyclin D2, Ilk, MAPK12, MAPK14, RAB4, melastatin 1 and previously unidentified splicing events for 436 genes. Real-time PCR further identified cell line–specific exons for Tmc6, Abi1, Sorbs1, Ndel1 and Snx16. Thus, the ASL approach proved effective in identifying splicing events, which suggest that alternative splicing is important in melanoma development.


Journal of Bacteriology | 2011

Complete genome sequences of Arcobacter butzleri ED-1 and Arcobacter sp. strain L, both isolated from a microbial fuel cell.

Hidehiro Toh; Vineet K. Sharma; Kenshiro Oshima; Shinji Kondo; Masahira Hattori; F. Bruce Ward; Andrew Free; Todd D. Taylor

Arcobacter butzleri strain ED-1 is an exoelectrogenic epsilonproteobacterium isolated from the anode biofilm of a microbial fuel cell. Arcobacter sp. strain L dominates the liquid phase of the same fuel cell. Here we report the finished and annotated genome sequences of these organisms.


Journal of Bacteriology | 2011

Genomes of Two Chronological Isolates (Helicobacter pylori 2017 and 2018) of the West African Helicobacter pylori Strain 908 Obtained from a Single Patient

Tiruvayipati Suma Avasthi; Singamaneni Haritha Devi; Todd D. Taylor; Narender Kumar; Ramani Baddam; Shinji Kondo; Yutaka Suzuki; Hervé Lamouliatte; Francis Mégraud; Niyaz Ahmed

The diverse clinical outcomes of colonization by Helicobacter pylori reflect the need to understand the genomic rearrangements enabling the bacterium to adapt to host niches and exhibit varied colonization/virulence potential. We describe the genome sequences of the two serial isolates, H. pylori 2017 and 2018 (the chronological subclones of H. pylori 908), cultured in 2003 from the antrum and corpus, respectively, of an African patient who suffered from recrudescent duodenal ulcer disease. When compared with the genome of the parent strain, 908 (isolated from the antrum of the same patient in 1994), the genome sequences revealed genomic alterations relevant to virulence optimization or host-specific adaptation.


Journal of Bacteriology | 2010

Genome of Helicobacter pylori Strain 908

Singamaneni Haritha Devi; Todd D. Taylor; Tiruvayipati Suma Avasthi; Shinji Kondo; Yutaka Suzuki; Francis Mégraud; Niyaz Ahmed

Helicobacter pylori is a genetically diverse and coevolved pathogen inhabiting human gastric niches and leading to a spectrum of gastric diseases in susceptible populations. We describe the genome sequence of H. pylori 908, which was originally isolated from an African patient living in France who suffered with recrudescent duodenal ulcer disease. The strain was found to be phylogenetically related to H. pylori J99, and its comparative analysis revealed several specific genome features and novel insertion-deletion and substitution events. The genome sequence revealed several strain-specific deletions and/or gain of genes exclusively present in HP908 compared with different sequenced genomes already available in the public domain. Comparative and functional genomics of HP908 and its subclones will be important in understanding genomic plasticity and the capacity to colonize and persist in a changing host environment.


Nucleic Acids Research | 2009

Identification of DNA regions and a set of transcriptional regulatory factors involved in transcriptional regulation of several human liver-enriched transcription factor genes

Hisashi Miura; Yasuhiro Tomaru; Misato Nakanishi; Shinji Kondo; Yoshihide Hayashizaki; Masanori Suzuki

Mammalian tissue- and/or time-specific transcription is primarily regulated in a combinatorial fashion through interactions between a specific set of transcriptional regulatory factors (TRFs) and their cognate cis-regulatory elements located in the regulatory regions. In exploring the DNA regions and TRFs involved in combinatorial transcriptional regulation, we noted that individual knockdown of a set of human liver-enriched TRFs such as HNF1A, HNF3A, HNF3B, HNF3G and HNF4A resulted in perturbation of the expression of several single TRF genes, such as HNF1A, HNF3G and CEBPA genes. We thus searched the potential binding sites for these five TRFs in the highly conserved genomic regions around these three TRF genes and found several putative combinatorial regulatory regions. Chromatin immunoprecipitation analysis revealed that almost all of the putative regulatory DNA regions were bound by the TRFs as well as two coactivators (CBP and p300). The strong transcription-enhancing activity of the putative combinatorial regulatory region located downstream of the CEBPA gene was confirmed. EMSA demonstrated specific bindings of these HNFs to the target DNA region. Finally, co-transfection reporter assays with various combinations of expression vectors for these HNF genes demonstrated the transcriptional activation of the CEBPA gene in a combinatorial manner by these TRFs.


Journal of Cell Science | 2014

Fluctuation of Rac1 activity is associated with the phenotypic and transcriptional heterogeneity of glioma cells.

Hiroko Yukinaga; Clara Shionyu; Eishu Hirata; Kumiko Ui-Tei; Takeshi Nagashima; Shinji Kondo; Mariko Okada-Hatakeyama; Honda Naoki; Michiyuki Matsuda

ABSTRACT Phenotypic heterogeneity of cancer cells is caused not only by genetic and epigenetic alterations but also by stochastic variation of intracellular signaling molecules. Using cells that stably express Förster resonance energy transfer (FRET) biosensors, we show here a correlation between a temporal fluctuation in the activity of Rac1 and the invasive properties of C6 glioma cells. By using long-term time-lapse imaging, we found that Rac1 activity in C6 glioma cells fluctuated over a timescale that was substantially longer than that of the replication cycle. Because the relative level of Rac1 activity in each cell was unaffected by a suspension–adhesion procedure, we were able to sort C6 glioma cells according to the levels of Rac1 activity, yielding Rac1high and Rac1low cells. The Rac1high cells invaded more efficiently than did Rac1low cells in a Matrigel invasion assay. We assessed the transcriptional profiles of Rac1high and Rac1low cells and performed gene ontology analysis. Among the 14 genes that were most associated with the term ‘membrane’ (membrane-related genes) in Rac1high cells, we identified four genes that were associated with glioma invasion and Rac1 activity by using siRNA knockdown experiments. Among the transcription factors upregulated in Rac1high cells, Egr2 was found to positively regulate expression of the four membrane-related invasion-associated genes. The identified signaling network might cause the fluctuations in Rac1 activity and the heterogeneity in the invasive capacity of glioma cells.


Journal of Biotechnology | 2015

Complete genome sequence of Streptomyces sp. strain CFMR 7, a natural rubber degrading actinomycete isolated from Penang, Malaysia.

Jayaram Nanthini; Kim-Hou Chia; Gincy Paily Thottathil; Todd D. Taylor; Shinji Kondo; Nazalan Najimudin; Primo Baybayan; Siddharth Singh; Kumar Sudesh

Streptomyces sp. strain CFMR 7, which naturally degrades rubber, was isolated from a rubber plantation. Whole genome sequencing and assembly resulted in 2 contigs with total genome size of 8.248 Mb. Two latex clearing protein (lcp) genes which are responsible for rubber degrading activities were identified.

Collaboration


Dive into the Shinji Kondo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshihide Hayashizaki

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Kawai

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Yoshihide Hayashizaki

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Piero Carninci

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiromi Nishida

Toyama Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge