Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shinji Toki is active.

Publication


Featured researches published by Shinji Toki.


The Journal of Allergy and Clinical Immunology | 2016

Respiratory syncytial virus infection activates IL-13–producing group 2 innate lymphoid cells through thymic stromal lymphopoietin

Matthew T. Stier; Melissa H. Bloodworth; Shinji Toki; Dawn C. Newcomb; Kasia Goleniewska; Kelli L. Boyd; Marc Quitalig; Anne L. Hotard; Martin L. Moore; Tina V. Hartert; Baohua Zhou; Andrew N. J. McKenzie; R. Stokes Peebles

Background Respiratory syncytial virus (RSV) is a major health care burden with a particularly high worldwide morbidity and mortality rate among infants. Data suggest that severe RSV-associated illness is in part caused by immunopathology associated with a robust type 2 response. Objective We sought to determine the capacity of RSV infection to stimulate group 2 innate lymphoid cells (ILC2s) and the associated mechanism in a murine model. Methods Wild-type (WT) BALB/c, thymic stromal lymphopoietin receptor (TSLPR) knockout (KO), or WT mice receiving an anti-TSLP neutralizing antibody were infected with the RSV strain 01/2-20. During the first 4 to 6 days of infection, lungs were collected for evaluation of viral load, protein concentration, airway mucus, airway reactivity, or ILC2 numbers. Results were confirmed with 2 additional RSV clinical isolates, 12/11-19 and 12/12-6, with known human pathogenic potential. Results RSV induced a 3-fold increase in the number of IL-13–producing ILC2s at day 4 after infection, with a concurrent increase in total lung IL-13 levels. Both thymic stromal lymphopoietin (TSLP) and IL-33 levels were increased 12 hours after infection. TSLPR KO mice did not mount an IL-13–producing ILC2 response to RSV infection. Additionally, neutralization of TSLP significantly attenuated the RSV-induced IL-13–producing ILC2 response. TSLPR KO mice displayed reduced lung IL-13 protein levels, decreased airway mucus and reactivity, attenuated weight loss, and similar viral loads as WT mice. Both 12/11-19 and 12/12-6 similarly induced IL-13–producing ILC2s through a TSLP-dependent mechanism. Conclusion These data demonstrate that multiple pathogenic strains of RSV induce IL-13–producing ILC2 proliferation and activation through a TSLP-dependent mechanism in a murine model and suggest the potential therapeutic targeting of TSLP during severe RSV infection.


American Journal of Respiratory and Critical Care Medicine | 2015

Prostaglandin I2 Signaling and Inhibition of Group 2 Innate Lymphoid Cell Responses

Weisong Zhou; Shinji Toki; Jian Zhang; Goleniewksa K; Dawn C. Newcomb; Jacqueline Yvonne Cephus; Daniel E. Dulek; Melissa H. Bloodworth; Matthew T. Stier; Polosuhkin; Rama Gangula; S. Mallal; Broide Dh; R.S. Peebles

RATIONALE Group 2 innate lymphoid cells (ILC2s) robustly produce IL-5 and IL-13, cytokines central to the asthma phenotype; however, the effect of prostaglandin (PG) I2 on ILC2 function is unknown. OBJECTIVES To determine the effect of PGI2 on mouse and human ILC2 cytokine expression in vitro and the effect of endogenous PGI2 and the PGI2 analog cicaprost on lung ILC2s in vivo. METHODS Flow-sorted bone marrow ILC2s of wild-type (WT) and PGI2 receptor-deficient (IP(-/-)) mice were cultured with IL-33 and treated with the PGI2 analog cicaprost. WT and IP(-/-) mice were challenged intranasally with Alternaria alternata extract for 4 consecutive days to induce ILC2 responses, and these were quantified. Prior to A. alternata extract, challenged WT mice were treated with cicaprost. Human flow-sorted peripheral blood ILC2s were cultured with IL-33 and IL-2 and treated with the PGI2 analog cicaprost. MEASUREMENT AND MAIN RESULTS We demonstrate that PGI2 inhibits IL-5 and IL-13 protein expression by IL-33-stimulated ILC2s purified from mouse bone marrow in a manner that was dependent on signaling through the PGI2 receptor IP. In a mouse model of 4 consecutive days of airway challenge with an extract of A. alternata, a fungal aeroallergen associated with severe asthma exacerbations, endogenous PGI2 signaling significantly inhibited lung IL-5 and IL-13 protein expression, and reduced the number of lung IL-5- and IL-13-expressing ILC2s, as well as the mean fluorescence intensity of IL-5 and IL-13 staining. In addition, exogenous administration of a PGI2 analog inhibited Alternaria extract-induced lung IL-5 and IL-13 protein expression, and reduced the number of lung IL-5- and IL-13-expressing ILC2s and the mean fluorescence intensity of IL-5 and IL-13 staining. Finally, a PGI2 analog inhibited IL-5 and IL-13 expression by human ILC2s that were stimulated with IL-2 and IL-33. CONCLUSIONS These results suggest that PGI2 may be a potential therapy to reduce the ILC2 response to protease-containing aeroallergens, such as Alternaria.


Thorax | 2013

IL-17A inhibits airway reactivity induced by respiratory syncytial virus infection during allergic airway inflammation

Dawn C. Newcomb; Madison G. Boswell; Sara Reiss; Weisong Zhou; Kasia Goleniewska; Shinji Toki; Melissa T Harintho; Nicholas W. Lukacs; Jay K. Kolls; R. Stokes Peebles

Background Viral infections are the most frequent cause of asthma exacerbations and are linked to increased airway reactivity (AR) and inflammation. Mice infected with respiratory syncytial virus (RSV) during ovalbumin (OVA)-induced allergic airway inflammation (OVA/RSV) had increased AR compared with OVA or RSV mice alone. Furthermore, interleukin 17A (IL-17A) was only increased in OVA/RSV mice. Objective To determine whether IL-17A increases AR and inflammation in the OVA/RSV model. Methods Wild-type (WT) BALB/c and IL-17A knockout (KO) mice underwent mock, RSV, OVA or OVA/RSV protocols. Lungs, bronchoalveolar lavage (BAL) fluid and/or mediastinal lymph nodes (MLNs) were harvested after infection. Cytokine expression was determined by ELISA in the lungs or BAL fluid. MLNs were restimulated with either OVA (323–229) peptide or RSV M2 (127–135) peptide and IL-17A protein expression was analysed. AR was determined by methacholine challenge. Results RSV increased IL-17A protein expression by OVA-specific T cells 6 days after infection. OVA/RSV mice had decreased interferon-β protein expression compared with RSV mice. OVA/RSV mice had increased IL-23p19 mRNA expression in lung homogenates compared with mock, OVA or RSV mice. Unexpectedly, IL-17A KO OVA/RSV mice had increased AR compared with WT OVA/RSV mice. Furthermore, IL-17A KO OVA/RSV mice had increased eosinophils, lymphocytes and IL-13 protein expression in BAL fluid compared with WT OVA/RSV mice. Conclusions IL-17A negatively regulated AR and airway inflammation in OVA/RSV mice. This finding is important because IL-17A has been identified as a potential therapeutic target in asthma, and inhibiting IL-17A in the setting of virally-induced asthma exacerbations may have adverse consequences.


American Journal of Respiratory Cell and Molecular Biology | 2013

Deficiency of gp91phox Inhibits Allergic Airway Inflammation

Carla M. Sevin; Dawn C. Newcomb; Shinji Toki; Wei Han; Taylor P. Sherrill; Madison G. Boswell; Zhou Zhu; Robert D. Collins; Kelli L. Boyd; Kasia Goleniewska; M.M. Huckabee; Timothy S. Blackwell; R. Stokes Peebles

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a multienzyme complex, is the major source for production of reactive oxygen species (ROS). ROS are increased in allergic diseases, such as asthma, but the role of ROS in disease pathogenesis remains uncertain. We hypothesized that mice unable to generate ROS via the NADPH oxidase pathway would have decreased allergic airway inflammation. To test this hypothesis, we studied gp91phox(-/-) mice in a model of allergic airway inflammation after sensitization and challenge with ovalbumin. Serum, bronchoalveolar lavage fluid, and lungs were then examined for evidence of allergic inflammation. We found that mice lacking a functional NADPH oxidase complex had significantly decreased ROS production and allergic airway inflammation, compared with wild-type (WT) control animals. To determine the mechanism by which allergic inflammation was inhibited by gp91phox deficiency, we cultured bone marrow-derived dendritic cells from WT and gp91phox(-/-) mice and activated them with LPS. IL-12 expression was significantly increased in the gp91phox(-/-) bone marrow-derived dendritic cells, suggesting that the cytokine profile produced in the absence of gp91phox enhanced the conditions leading to T helper (Th) type 1 differentiation, while inhibiting Th2 polarization. Splenocytes from sensitized gp91phox(-/-) animals produced significantly less IL-13 in response to ovalbumin challenge in vitro compared with splenocytes from sensitized WT mice, suggesting that NADPH oxidase promotes allergic sensitization. In contrast, inflammatory cytokines produced by T cells cultured from WT and gp91phox(-/-) mice under Th0, Th1, Th2, and Th17 conditions were not significantly different. This study demonstrates the importance of NADPH oxidase activity and ROS production in a murine model of asthma.


Thorax | 2016

The histone deacetylase inhibitor trichostatin A suppresses murine innate allergic inflammation by blocking group 2 innate lymphoid cell (ILC2) activation

Shinji Toki; Kasia Goleniewska; Sara Reiss; Weisong Zhou; Dawn C. Newcomb; Melissa H. Bloodworth; Matthew T. Stier; Kelli L. Boyd; Vasiliy V. Polosukhin; Sriram Subramaniam; R. Stokes Peebles

Background Group 2 innate lymphoid cells (ILC2) are an important source of the type 2 cytokines interleukin (IL)-5 and IL-13 that are critical to the allergic airway phenotype. Previous studies reported that histone deacetylase (HDAC) inhibition by trichostatin A (TSA) downregulated adaptive allergic immune responses; however, the effect of HDAC inhibition on the early innate allergic immune response is unknown. Therefore, we investigated the effect of TSA on innate airway inflammation mediated by ILC2 activation. Methods BALB/c mice were challenged intranasally with Alternaria extract, exogenous recombinant mouse IL-33 (rmIL-33) or the respective vehicles for four consecutive days following TSA or vehicle treatment. Bronchoalveolar lavage (BAL) fluids and lungs were harvested 24 h after the last challenge. Results We found that TSA treatment significantly decreased the number of ILC2 expressing IL-5 and IL-13 in the lungs challenged with Alternaria extract or rmIL-33 compared with vehicle treatment (p<0.05). TSA treatment significantly decreased protein expression of IL-5, IL-13, CCL11 and CCL24 in the lung homogenates from Alternaria extract-challenged mice or rmIL-33-challenged mice compared with vehicle treatment (p<0.05). Further, TSA treatment significantly decreased the number of perivascular eosinophils and mucus production in the large airways that are critical components of the asthma phenotype (p<0.05). TSA did not change early IL-33 release in the BAL fluids; however, TSA decreased lung IL-33 expression from epithelial cells 24 h after last Alternaria extract challenge compared with vehicle treatment (p<0.05). Conclusions These results reveal that TSA reduces allergen-induced ILC2 activation and the early innate immune responses to an inhaled protease-containing aeroallergen.


PLOS ONE | 2012

Prostaglandin I2 signaling drives Th17 differentiation and exacerbates experimental autoimmune encephalomyelitis.

Weisong Zhou; Dustin R. Dowell; M.M. Huckabee; Dawn C. Newcomb; Madison G. Boswell; Kasia Goleniewska; Matthew T. Lotz; Shinji Toki; Huiyong Yin; Song-Yi Yao; Chandramohan Natarajan; Pingsheng Wu; Subramaniam Sriram; Richard M. Breyer; Garret A. FitzGerald; R. Stokes Peebles

Background Prostaglandin I2 (PGI2), a lipid mediator currently used in treatment of human disease, is a critical regulator of adaptive immune responses. Although PGI2 signaling suppressed Th1 and Th2 immune responses, the role of PGI2 in Th17 differentiation is not known. Methodology/Principal Findings In mouse CD4+CD62L+ naïve T cell culture, the PGI2 analogs iloprost and cicaprost increased IL-17A and IL-22 protein production and Th17 differentiation in vitro. This effect was augmented by IL-23 and was dependent on PGI2 receptor IP signaling. In mouse bone marrow-derived CD11c+ dendritic cells (BMDCs), PGI2 analogs increased the ratio of IL-23/IL-12, which is correlated with increased ability of BMDCs to stimulate naïve T cells for IL-17A production. Moreover, IP knockout mice had delayed onset of a Th17-associated neurological disease, experimental autoimmune encephalomyelitis (EAE), and reduced infiltration of IL-17A-expressing mononuclear cells in the spinal cords compared to wild type mice. These results suggest that PGI2 promotes in vivo Th17 responses. Conclusion The preferential stimulation of Th17 differentiation by IP signaling may have important clinical implications as PGI2 and its analogs are commonly used to treat human pulmonary hypertension.


Infection and Immunity | 2014

Allergic Airway Inflammation Decreases Lung Bacterial Burden following Acute Klebsiella pneumoniae Infection in a Neutrophil- and CCL8-Dependent Manner

Daniel E. Dulek; Dawn C. Newcomb; Kasia Goleniewska; Jaqueline Cephus; Weisong Zhou; Sara Reiss; Shinji Toki; Fei Ye; Rinat Zaynagetdinov; Taylor P. Sherrill; Timothy S. Blackwell; Martin L. Moore; Kelli L. Boyd; Jay K. Kolls; R. Stokes Peebles

ABSTRACT The Th17 cytokines interleukin-17A (IL-17A), IL-17F, and IL-22 are critical for the lung immune response to a variety of bacterial pathogens, including Klebsiella pneumoniae. Th2 cytokine expression in the airways is a characteristic feature of asthma and allergic airway inflammation. The Th2 cytokines IL-4 and IL-13 diminish ex vivo and in vivo IL-17A protein expression by Th17 cells. To determine the effect of IL-4 and IL-13 on IL-17-dependent lung immune responses to acute bacterial infection, we developed a combined model in which allergic airway inflammation and lung IL-4 and IL-13 expression were induced by ovalbumin sensitization and challenge prior to acute lung infection with K. pneumoniae. We hypothesized that preexisting allergic airway inflammation decreases lung IL-17A expression and airway neutrophil recruitment in response to acute K. pneumoniae infection and thereby increases the lung K. pneumoniae burden. As hypothesized, we found that allergic airway inflammation decreased the number of K. pneumoniae-induced airway neutrophils and lung IL-17A, IL-17F, and IL-22 expression. Despite the marked reduction in postinfection airway neutrophilia and lung expression of Th17 cytokines, allergic airway inflammation significantly decreased the lung K. pneumoniae burden and postinfection mortality. We showed that the decreased lung K. pneumoniae burden was independent of IL-4, IL-5, and IL-17A and partially dependent on IL-13 and STAT6. Additionally, we demonstrated that the decreased lung K. pneumoniae burden associated with allergic airway inflammation was both neutrophil and CCL8 dependent. These findings suggest a novel role for CCL8 in lung antibacterial immunity against K. pneumoniae and suggest new mechanisms of orchestrating lung antibacterial immunity.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2011

PGI synthase overexpression protects against bleomycin-induced mortality and is associated with increased Nqo 1 expression

Weisong Zhou; Dustin R. Dowell; Mark W. Geraci; Timothy S. Blackwell; Robert D. Collins; Vasiliy V. Polosukhin; William Lawson; Pingsheng Wu; Thomas E. Sussan; Shyam Biswal; Kasia Goleniewska; Jamye F. O'Neal; Dawn C. Newcomb; Shinji Toki; Jason D. Morrow; R. Stokes Peebles

The mortality rate for acute lung injury (ALI) is reported to be between 35-40%, and there are very few treatment strategies that improve the death rate from this condition. Previous studies have suggested that signaling through the prostaglandin (PG) I(2) receptor may protect against bleomycin-induced ALI in mice. We found that mice that overexpress PGI synthase (PGIS) in the airway epithelium were significantly protected against bleomycin-induced mortality and had reduced parenchymal consolidation, apoptosis of lung tissue, and generation of F(2)-isoprostanes compared with littermate wild-type controls. In addition, we show for the first time in both in vivo and in vitro experiments that PGI(2) induced the expression of NADP (H): quinoneoxidoreductase 1 (Nqo 1), an enzyme that prevents the generation of reactive oxygen species. PGI(2) induction of Nqo 1 provides a possible novel mechanism by which this prostanoid protects against bleomycin-induced mortality and identifies a potential therapeutic target for human ALI.


Nanomedicine: Nanotechnology, Biology and Medicine | 2013

A comprehensive analysis of transfection-assisted delivery of iron oxide nanoparticles to dendritic cells.

Shinji Toki; Reed A. Omary; Kevin J. Wilson; John C. Gore; R. Stokes Peebles; Wellington Pham

UNLABELLED Polylysine (PL) has been used to facilitate dendritic cell (DC) uptake of super paramagnetic iron oxide (SPIO) nanoparticles for use in magnetic resonance imaging (MRI). In this work, we examined the effect of PL on cell toxicity and induction of cell maturation as manifested by the up-regulation of surface molecules. We found that PL became toxic to bone marrow-derived DCs (BMDCs) at the 10 μg/ml threshold. Incubation of BMDCs with 20 μg/ml of PL for 1h resulted in approximately 90% cell death. However, addition of SPIO nanoparticles rescued DCs from PL-induced death as the combination of SPIO with PL did not cause cytotoxicity until the PL concentration was 1000 μg/ml. Prolonged exposure to PL induced BMDC maturation as noted by the expression of surface molecules such as MHC class II, CD40, CCR7 and CD86. However, the combination of SPIO and PL did not induce BMDC maturation at 1h. However prolonged exposure to SPIO nanoparticles induced CD40 expression and protein expression of TNFα and KC. The data suggest that the use of PL to enhance the labeling of DCs with SPIO nanoparticles is a dedicated work. Appropriate calibration of the incubation time and concentrations of PL and SPIO nanoparticles is crucial to the development of MRI technology for noninvasive imaging of DCs in vivo. FROM THE CLINICAL EDITOR The authors of this study present detailed data on toxicity and efficiency of polylysine-facilitated uptake of USPIO-s by dendritic cells for cell-specific MR imaging.


Journal of Leukocyte Biology | 2013

PGI2 signaling inhibits antigen uptake and increases migration of immature dendritic cells

Shinji Toki; Kasia Goleniewska; M.M. Huckabee; Weisong Zhou; Dawn C. Newcomb; Garret A. FitzGerald; William Lawson; R. Stokes Peebles

PGI2 signaling through IP inhibits allergen‐induced inflammatory responses in mice. We reported previously that PGI2 analogs decreased proinflammatory cytokine and chemokine production by mature BMDCs. However, whether PGI2 modulates the function of immature DCs has not been investigated. We hypothesized that PGI2 negatively regulates immature DC function and investigated the effect of PGI2 analogs on immature BMDC antigen uptake and migration in vitro and in vivo. Immature BMDCs were obtained from WT and IPKO mice, both on a C57BL/6 background. The PGI2 analog cicaprost decreased FITC‐OVA uptake by immature BMDCs. In addition, cicaprost increased immature BMDC podosome dissolution, pro‐MMP‐9 production, cell surface CCR7 expression, and chemotactic migration toward CCL19 and CCL21, as well as chemokinesis, in an IP‐specific fashion. These in vitro results suggested that cicaprost promotes migration of immature DCs from mucosal surface to draining LNs. This concept was supported by the finding that migration of immature GFP+ BMDCs to draining LNs was enhanced by pretreatment with cicaprost. Further, migration of immature lung DCs labeled with PKH26 was enhanced by intranasal cicaprost administration. Our results suggest PGI2‐IP signaling increases immature DC migration to the draining LNs and may represent a novel mechanism by which this eicosanoid inhibits immune responses.

Collaboration


Dive into the Shinji Toki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelli L. Boyd

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Daniel E. Dulek

Monroe Carell Jr. Children's Hospital at Vanderbilt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge