Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shinkyu Choi is active.

Publication


Featured researches published by Shinkyu Choi.


Cardiovascular Research | 2011

Globotriaosylceramide leads to KCa3.1 channel dysfunction: a new insight into endothelial dysfunction in Fabry disease

Seonghee Park; Ji Aee Kim; Ka Young Joo; Shinkyu Choi; Eun-Nam Choi; Jung-A Shin; Ki-Hwan Han; Sung-Chul Jung; Suk Hyo Suh

AIMS Excessive endothelial globotriaosylceramide (Gb3) accumulation is associated with endothelial dysfunction and impaired endothelium-dependent relaxation in Fabry disease. In endothelial cells, K(Ca)3.1 channels contribute to endothelium-dependent relaxation. However, the effect of Gb3 on K(Ca)3.1 channels and the underlying mechanisms of Gb3-induced dysfunction are unknown. Herein, we hypothesized that Gb3 accumulation induces K(Ca)3.1 channel dysfunction and aimed to clarify the underlying mechanisms. METHODS AND RESULTS The animal model of Fabry disease, α-galactosidase A (Gla) knockout mice, displayed age-dependent K(Ca)3.1 channel dysfunction. K(Ca)3.1 current and the channel expression were significantly reduced in mouse aortic endothelial cells (MAECs) of aged Gla knockout mice, whereas they were not changed in MAECs of wild-type and young Gla knockout mice. In addition, K(Ca)3.1 current and the channel expression were concentration-dependently reduced in Gb3-treated MAECs. In both Gb3-treated and aged Gla knockout MAECs, extracellular signal-regulated kinase (ERK) and activator protein-1 (AP-1) were down-regulated and repressor element-1 silencing transcription factor (REST) was up-regulated. Gb3 inhibited class III phosphoinositide 3-kinase and decreased intracellular levels of phosphatidylinositol 3-phosphate [PI(3)P]. In addition, endothelium-dependent relaxation was significantly attenuated in Gb3-treated mouse aortic rings. CONCLUSION Gb3 accumulation reduces K(Ca)3.1 channel expression by down-regulating ERK and AP-1 and up-regulating REST and the channel activity by decreasing intracellular levels of PI(3)P. Gb3 thereby evokes K(Ca)3.1 channel dysfunction, and the channel dysfunction in vascular endothelial cells may contribute to vasculopathy in Fabry disease.


Journal of Biological Chemistry | 2006

Nuclear Factor-κB Activated by Capacitative Ca2+ Entry Enhances Muscarinic Receptor-mediated Soluble Amyloid Precursor Protein (sAPPα) Release in SH-SY5Y Cells

Shinkyu Choi; Jin Hyoung Kim; Eun-Jihn Roh; Moon-Jeong Ko; Jieun Jung; Hwa-Jung Kim

Gq/11 protein-coupled muscarinic receptors are known to regulate the release of soluble amyloid precursor protein (sAPPα) produced by α-secretase processing; however, their signaling mechanisms remain to be elucidated. It has been reported that a muscarinic agonist activates nuclear factor (NF)-κB, a transcription factor that has been shown to play an important role in the Alzheimer disease brain, and that NF-κB activation is regulated by intracellular Ca2+ level. In the present study, we investigated whether NF-κB activation plays a role in muscarinic receptor-mediated sAPPα release enhancement and contributes to a changed capacitative Ca2+ entry (CCE), which was suggested to be involved in the muscarinic receptor-mediated stimulation of sAPPα release. Muscarinic receptor-mediated NF-κB activation was confirmed by observing the translocation of the active subunit (p65) of NF-κB to the nucleus by the muscarinic agonist, oxotremorine M (oxoM), in SH-SY5Y neuroblastoma cells expressing muscarinic receptors that are predominantly of the M3 subtype. NF-κB activation and sAPPα release enhancement induced by oxoM were inhibited by NF-κB inhibitors, such as an NF-κB peptide inhibitor (SN50), an IκBα kinase inhibitor (BAY11-7085), a proteasome inhibitor (MG132), the inhibitor of proteasome activity and IκB phosphorylation, pyrrolidine dithiocarbamate, the novel NF-κB activation inhibitor (6-amino-4-(4-phenoxyphenylethylamino) quinazoline), and by an intracellular Ca2+ chelator (TMB-8). Furthermore, both oxoM-induced NF-κB activation and sAPPα release were antagonized by CCE inhibitors (gadolinium or SKF96365) but not by voltage-gated Ca2+-channel blockers. On the other hand, treatment of cells with NF-κB inhibitors (SN50, BAY11-7085, MG132, or pyrrolidine dithiocarbamate) did not inhibit muscarinic receptor-mediated CCE. These findings provide evidence for the involvement of NF-κB regulated by CCE in muscarinic receptor-mediated sAPPα release enhancement.


Neuroscience Letters | 2006

Phospholipase A2 is involved in muscarinic receptor-mediated sAPPα release independently of cyclooxygenase or lypoxygenase activity in SH-SY5Y cells

Hye-Won Cho; Jin Hyoung Kim; Shinkyu Choi; Hwa-Jung Kim

The release of soluble amyloid precursor protein alpha (sAPPalpha), produced during alpha-secretase processing by cleavage within the beta amyloid peptide domain of APP, is highly regulated by several external and internal signals. Because evidence suggests the involvement of inflammatory processes in the pathology of Alzheimers disease and APP formation, we examined the involvement of the phospholipase A2 (PLA2) pathway and of its downstream cyclooxygenase (COX) and lipoxygenase (LOX) pathways in the regulation of sAPPalpha, release induced by muscarinic receptor activation in SH-SY5Y cells. The amount of sAPP released into the culture medium was analyzed using a monoclonal 6E10 antibody detecting sAPPalpha. Treatment with the PLA2 inhibitor, manoalide, blocked the release of oxoM (muscarinic receptor agonist)-stimulated sAPPalpha, and the muscarinic receptor-mediated sAPPalpha release was increased by the non-selective PLA2 activator mellitin. COX and LOX inhibitors inhibited exogenous AA-induced sAPPalpha release, but upregulated basal constitutive sAPPalpha release. However, treatment with COX or LOX inhibitors failed to significantly change oxoM-stimulated sAPPalpha release, and furthermore, muscarinic receptor activation inhibited AA-stimulated COX activity. Our results suggest that sAPPalpha release induced by muscarinic receptor activation is regulated by AA generation via PLA2 activation independently of COX and LOX activities, but that the COX and LOX pathways are possibly involved in the constitutive release of sAPPalpha.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Globotriaosylceramide Induces Lysosomal Degradation of Endothelial KCa3.1 in Fabry Disease

Shinkyu Choi; Ji Aee Kim; Hye-Young Na; Sungeun Cho; Seonghee Park; Sung-Chul Jung; Suk Hyo Suh

Objective— Globotriaosylceramide (Gb3) induces KCa3.1 downregulation in Fabry disease (FD). We investigated whether Gb3 induces KCa3.1 endocytosis and degradation. Approach and Results— KCa3.1, especially plasma membrane–localized KCa3.1, was downregulated in both Gb3-treated mouse aortic endothelial cells (MAECs) and human umbilical vein endothelial cells. Gb3-induced KCa3.1 downregulation was prevented by lysosomal inhibitors but not by a proteosomal inhibitor. Endoplasmic reticulum stress–inducing agents did not induce KCa3.1 downregulation. Gb3 upregulated the protein levels of early endosome antigen 1 and lysosomal-associated membrane protein 2 in MAECs. Compared with MAECs from age-matched wild-type mice, those from aged &agr;-galactosidase A (Gla)-knockout mice, an animal model of FD, showed downregulated KCa3.1 expression and upregulated early endosome antigen 1 and lysosomal-associated membrane protein 2 expression. In contrast, no significant difference was found in early endosome antigen 1 and lysosomal-associated membrane protein 2 expression between young Gla-knockout and wild-type MAECs. In aged Gla-knockout MAECs, clathrin was translocated close to the cell border and clathrin knockdown recovered KCa3.1 expression. Rab5, an effector of early endosome antigen 1, was upregulated, and Rab5 knockdown restored KCa3.1 expression, the current, and endothelium-dependent relaxation. Conclusions —Gb3 accelerates the endocytosis and lysosomal degradation of endothelial KCa3.1 via a clathrin-dependent process, leading to endothelial dysfunction in FD.


Free Radical Biology and Medicine | 2013

NADPH oxidase 2-derived superoxide downregulates endothelial KCa3.1 in preeclampsia

Shinkyu Choi; Ji Aee Kim; Hye-Young Na; Ji-Eun Kim; Seonghee Park; Ki-Hwan Han; Young Ju Kim; Suk Hyo Suh

Endothelial dysfunction is associated with KCa3.1 dysfunction and contributes to the development of hypertension in preeclampsia. However, evidence of endothelial KCa3.1 dysfunction in the vascular system from women with preeclampsia is still lacking. Therefore, we examined whether endothelial KCa3.1 dysfunction occurs in vessels from women with preeclampsia. We compared KCa3.1 and NADPH oxidase (NOX) expression in umbilical vessels and primary cultured human umbilical vein endothelial cells (HUVECs) from normal (NP; n=17) and preeclamptic pregnancy (PE; n=19) and examined the effects of plasma from NP or PE on KCa3.1 and NOX2 expression in primary cultured HUVECs from NP or human uterine microvascular endothelial cells. The endothelial KCa3.1 was downregulated, and NOX2 was upregulated, in umbilical vessels and HUVECs from PE, compared with those from NP. In addition, HUVECs from PE showed a significant decrease in KCa3.1 current. Plasma from PE induced KCa3.1 down regulation, NOX2 upregulation, phosphorylated-p38 mitogen-activated protein kinase downregulation, and superoxide generation, and these effects were prevented by antioxidants (tempol or tiron), NOX2 inhibition, or anti-lectin-like oxidized low-density lipoprotein (LDL) receptor 1 (LOX1) antibody. Oxidized LDL and the superoxide donor xanthine/xanthine oxidase mixture induced KCa3.1 downregulation. In contrast, plasma from PE did not generate hydrogen peroxide, and the hydrogen peroxide donor tert-butylhydroperoxide induced KCa3.1 upregulation. These results provide the first evidence that plasma from PE generates superoxide via a LOX1-NOX2-mediated pathway and downregulates endothelial KCa3.1, which may contribute to endothelial dysfunction and vasculopathy in preeclampsia. This suggests KCa3.1as a novel target for patients with preeclampsia.


European Journal of Pharmacology | 2008

The Na+/Ca2+ exchanger inhibitor KB-R7943 activates large-conductance Ca2+-activated K+ channels in endothelial and vascular smooth muscle cells

Guo Hua Liang; Ji Aee Kim; Geun Hee Seol; Shinkyu Choi; Suk Hyo Suh

The effect of the selective inhibitor of Na(+)/Ca(2+) exchanger (NCX), KB-R7943, on large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels was examined in cultured human umbilical vein endothelial cells (HUVECs) and freshly isolated mouse aortic smooth muscle cells (MASMCs). In voltage-clamped cells, KB-R7943 reversibly activated BK(Ca) currents in HUVECs and MASMCs. The EC(50) of KB-R7943 for BK(Ca) current activation in HUVECs was determined to be 6.78+/-0.7 microM. In inside-out and outside-out patches, KB-R7943 markedly increased BK(Ca) channel activity and slightly decreased single channel current amplitudes. In inside-out patches, KB-R7943 shifted the relationship between [Ca(2+)](i) and open probability (P(o)) to the left; the [Ca(2+)](i) required to evoke half-maximal activation changed from 1220+/-68 nM (in the absence of KB-R7943) to 620+/-199 nM (in the presence of 10 microM KB-R7943). In addition, KB-R7943 shifted the relationship between membrane potential and P(o) to the left; the membrane potential to evoke half-maximal activation changed from 76.86+/-1.09 mV (in the absence of KB-R7943) to 49.62+/-2.55 mV (in the presence of 10 microM KB-R7943). In conclusion, KB-R7943 was found to act as a potent BK(Ca) channel activator, which increases the sensitivity of BK(Ca) channels to cytosolic free Ca(2+) and membrane potential, and thereby BK(Ca) channel activity. These results should be considered when KB-R7943 is used as NCX blocker.


The Korean Journal of Physiology and Pharmacology | 2013

Contradictory Effects of Superoxide and Hydrogen Peroxide on KCa3.1 in Human Endothelial Cells

Shinkyu Choi; Hye-Young Na; Ji Aee Kim; Sungeun Cho; Suk Hyo Suh

Reactive oxygen species (ROS) are generated in various cells, including vascular smooth muscle and endothelial cells, and regulate ion channel functions. KCa3.1 plays an important role in endothelial functions. However, the effects of superoxide and hydrogen peroxide radicals on the expression of this ion channel in the endothelium remain unclear. In this study, we examined the effects of ROS donors on KCa3.1 expression and the K+ current in primary cultured human umbilical vein endothelial cells (HUVECs). The hydrogen peroxide donor, tert-butyl hydroperoxide (TBHP), upregulated KCa3.1 expression, while the superoxide donors, xanthine/xanthine oxidase mixture (X/XO) and lysopho-sphatidylcholine (LPC), downregulated its expression, in a concentration-dependent manner. These ROS donor effects were prevented by antioxidants or superoxide dismustase. Phosphorylated extracellular signal-regulated kinase (pERK) was upregulated by TBHP and downregulated by X/XO. In addition, repressor element-1-silencing transcription factor (REST) was downregulated by TBHP, and upregulated by X/XO. Furthermore, KCa3.1 current, which was activated by clamping cells with 1 µM Ca2+ and applying the KCa3.1 activator 1-ethyl-2-benzimidazolinone, was further augmented by TBHP, and inhibited by X/XO. These effects were prevented by antioxidants. The results suggest that hydrogen peroxide increases KCa3.1 expression by upregulating pERK and downregulating REST, and augments the K+ current. On the other hand, superoxide reduces KCa3.1 expression by downregulating pERK and upregulating REST, and inhibits the K+ current. ROS thereby play a key role in both physiological and pathological processes in endothelial cells by regulating KCa3.1 and endothelial function.


Aging Cell | 2015

Altering sphingolipid composition with aging induces contractile dysfunction of gastric smooth muscle via KCa1.1 upregulation

Shinkyu Choi; Ji Aee Kim; Tae Hun Kim; Hai-yan Li; Kyong-Oh Shin; Yong-Moon Lee; Seikwan Oh; Yael Pewzner-Jung; Anthony H. Futerman; Suk Hyo Suh

KCa1.1 regulates smooth muscle contractility by modulating membrane potential, and age‐associated changes in KCa1.1 expression may contribute to the development of motility disorders of the gastrointestinal tract. Sphingolipids (SLs) are important structural components of cellular membranes whose altered composition may affect KCa1.1 expression. Thus, in this study, we examined whether altered SL composition due to aging may affect the contractility of gastric smooth muscle (GSM). We studied changes in ceramide synthases (CerS) and SL levels in the GSM of mice of varying ages and compared them with those in young CerS2‐null mice. The levels of C16‐ and C18‐ceramides, sphinganine, sphingosine, and sphingosine 1‐phosphate were increased, and levels of C22, C24:1 and C24 ceramides were decreased in the GSM of both aged wild‐type and young CerS2‐null mice. The altered SL composition upregulated KCa1.1 and increased KCa1.1 currents, while no change was observed in KCa1.1 channel activity. The upregulation of KCa1.1 impaired intracellular Ca2+ mobilization and decreased phosphorylated myosin light chain levels, causing GSM contractile dysfunction. Additionally, phosphoinositide 3‐kinase, protein kinase Cζ, c‐Jun N‐terminal kinases, and nuclear factor kappa‐B were found to be involved in KCa1.1 upregulation. Our findings suggest that age‐associated changes in SL composition or CerS2 ablation upregulate KCa1.1 via the phosphoinositide 3‐kinase/protein kinase Cζ/c‐Jun N‐terminal kinases/nuclear factor kappa‐B‐mediated pathway and impair Ca2+ mobilization, which thereby induces the contractile dysfunction of GSM. CerS2‐null mice exhibited similar effects to aged wild‐type mice; therefore, CerS2‐null mouse models may be utilized for investigating the pathogenesis of aging‐associated motility disorders.


Korean Circulation Journal | 2014

Apoptosis and inflammation associated gene expressions in monocrotaline-induced pulmonary hypertensive rats after bosentan treatment.

Young Mi Hong; Jung Hyun Kwon; Shinkyu Choi; Kwan Chang Kim

Background and Objectives Vascular wall remodeling in pulmonary hypertension can be caused by an aberration in the normal balance between proliferation and apoptosis of endothelial cell in the pulmonary artery. The objective of this study was to evaluate the effect of bosentan on apoptosis in monocrotaline (MCT)-induced pulmonary hypertension. Materials and Methods Sprague-Dawley rats were divided into three groups: control (C) group, M group (MCT 60 mg/kg) and B group (MCT 60 mg/kg plus bosentan 20 mg/day orally). Gene expressions of Bcl (B cell leukemia/lymphoma)-2, caspase-3, complement component (C)-6, vascular endothelial growth factor (VEGF), interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α) were analyzed by real time polymerase chain reaction and western blot analysis. Results The messenger ribonucleic acid (mRNA) expressions of caspase-3 and VEGF were significantly increased in the M group compared with the C group, and significantly decreased in the B group compared with the M group in week 4. mRNA expression of IL-6 was significantly decreased in weeks 1, 2, and 4 in the B group compared with the M group. mRNA expression of TNF-α was significantly decreased on day 5 and in weeks 1 and 2 in the B group compared with the M group. Conclusion Bosentan may have potential for preventing apoptosis and inflammation.


Aging Cell | 2016

KCa3.1 upregulation preserves endothelium-dependent vasorelaxation during aging and oxidative stress

Shinkyu Choi; Ji Aee Kim; Hai-yan Li; Kyong-Oh Shin; Goo Taeg Oh; Yong-Moon Lee; Seikwan Oh; Yael Pewzner-Jung; Anthony H. Futerman; Suk Hyo Suh

Endothelial oxidative stress develops with aging and reactive oxygen species impair endothelium‐dependent relaxation (EDR) by decreasing nitric oxide (NO) availability. Endothelial KCa3.1, which contributes to EDR, is upregulated by H2O2. We investigated whether KCa3.1 upregulation compensates for diminished EDR to NO during aging‐related oxidative stress. Previous studies identified that the levels of ceramide synthase 5 (CerS5), sphingosine, and sphingosine 1‐phosphate were increased in aged wild‐type and CerS2 mice. In primary mouse aortic endothelial cells (MAECs) from aged wild‐type and CerS2 null mice, superoxide dismutase (SOD) was upregulated, and catalase and glutathione peroxidase 1 (GPX1) were downregulated, when compared to MAECs from young and age‐matched wild‐type mice. Increased H2O2 levels induced Fyn and extracellular signal‐regulated kinases (ERKs) phosphorylation and KCa3.1 upregulation. Catalase/GPX1 double knockout (catalase−/−/GPX1−/−) upregulated KCa3.1 in MAECs. NO production was decreased in aged wild‐type, CerS2 null, and catalase−/−/GPX1−/− MAECs. However, KCa3.1 activation‐induced, NG‐nitro‐l‐arginine‐, and indomethacin‐resistant EDR was increased without a change in acetylcholine‐induced EDR in aortic rings from aged wild‐type, CerS2 null, and catalase−/−/GPX1−/− mice. CerS5 transfection or exogenous application of sphingosine or sphingosine 1‐phosphate induced similar changes in levels of the antioxidant enzymes and upregulated KCa3.1. Our findings suggest that, during aging‐related oxidative stress, SOD upregulation and downregulation of catalase and GPX1, which occur upon altering the sphingolipid composition or acyl chain length, generate H2O2 and thereby upregulate KCa3.1 expression and function via a H2O2/Fyn‐mediated pathway. Altogether, enhanced KCa3.1 activity may compensate for decreased NO signaling during vascular aging.

Collaboration


Dive into the Shinkyu Choi's collaboration.

Top Co-Authors

Avatar

Ji Aee Kim

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar

Suk Hyo Suh

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seikwan Oh

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar

Hai-yan Li

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge