Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shinsuke Muto is active.

Publication


Featured researches published by Shinsuke Muto.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Relationship between the structure of SET/TAF-Iβ/INHAT and its histone chaperone activity

Shinsuke Muto; Miki Senda; Yusuke Akai; Lui Sato; Toru Suzuki; Ryozo Nagai; Toshiya Senda; Masami Horikoshi

Histone chaperones assemble and disassemble nucleosomes in an ATP-independent manner and thus regulate the most fundamental step in the alteration of chromatin structure. The molecular mechanisms underlying histone chaperone activity remain unclear. To gain insights into these mechanisms, we solved the crystal structure of the functional domain of SET/TAF-Iβ/INHAT at a resolution of 2.3 Å. We found that SET/TAF-Iβ/INHAT formed a dimer that assumed a “headphone”-like structure. Each subunit of the SET/TAF-Iβ/INHAT dimer consisted of an N terminus, a backbone helix, and an “earmuff” domain. It resembles the structure of the related protein NAP-1. Comparison of the crystal structures of SET/TAF-Iβ/INHAT and NAP-1 revealed that the two proteins were folded similarly except for an inserted helix. However, their backbone helices were shaped differently, and the relative dispositions of the backbone helix and the earmuff domain between the two proteins differed by ≈40°. Our biochemical analyses of mutants revealed that the region of SET/TAF-Iβ/INHAT that is engaged in histone chaperone activity is the bottom surface of the earmuff domain, because this surface bound both core histones and double-stranded DNA. This overlap or closeness of the activity surface and the binding surfaces suggests that the specific association among SET/TAF-Iβ/INHAT, core histones, and double-stranded DNA is requisite for histone chaperone activity. These findings provide insights into the possible mechanisms by which histone chaperones assemble and disassemble nucleosome structures.


Molecular and Cellular Biology | 2003

Positive and Negative Regulation of the Cardiovascular Transcription Factor KLF5 by p300 and the Oncogenic Regulator SET through Interaction and Acetylation on the DNA-Binding Domain

Saku Miyamoto; Toru Suzuki; Shinsuke Muto; Kenichi Aizawa; Akatsuki Kimura; Yoshiko Mizuno; Tomoko Nagino; Yasushi Imai; Naruhiko Adachi; Masami Horikoshi; Ryozo Nagai

ABSTRACT Here we show a novel pathway of transcriptional regulation of a DNA-binding transcription factor by coupled interaction and modification (e.g., acetylation) through the DNA-binding domain (DBD). The oncogenic regulator SET was isolated by affinity purification of factors interacting with the DBD of the cardiovascular transcription factor KLF5. SET negatively regulated KLF5 DNA binding, transactivation, and cell-proliferative activities. Down-regulation of the negative regulator SET was seen in response to KLF5-mediated gene activation. The coactivator/acetylase p300, on the other hand, interacted with and acetylated KLF5 DBD, and activated its transcription. Interestingly, SET inhibited KLF5 acetylation, and a nonacetylated mutant of KLF5 showed reduced transcriptional activation and cell growth complementary to the actions of SET. These findings suggest a new pathway for regulation of a DNA-binding transcription factor on the DBD through interaction and coupled acetylation by two opposing regulatory factors of a coactivator/acetylase and a negative cofactor harboring activity to inhibit acetylation.


Journal of Biological Chemistry | 2005

The Deacetylase HDAC1 Negatively Regulates the Cardiovascular Transcription Factor Krüppel-like Factor 5 through Direct Interaction

Takayoshi Matsumura; Toru Suzuki; Kenichi Aizawa; Yoshiko Munemasa; Shinsuke Muto; Masami Horikoshi; Ryozo Nagai

Transcription is regulated by a network of transcription factors and related cofactors that act in concert with the general transcription machinery. Elucidating their underlying interactions is important for understanding the mechanisms regulating transcription. Recently, we have shown that Krüppel-like factor KLF5, a member of the Sp/KLF family of zinc finger factors and a key regulator of cardiovascular remodeling, is regulated positively by the acetylase p300 and negatively by the oncogenic regulator SET through coupled interaction and regulation of acetylation. Here, we have shown that the deacetylase HDAC1 can negatively regulate KLF5 through direct interaction. KLF5 interacts with HDAC1 in the cell and in vitro. Gel shift DNA binding assay showed that their interaction inhibits the DNA binding activity of KLF5, suggesting a property of HDAC1 to directly affect the DNA binding affinity of a transcription factor. Reporter assay also revealed that HDAC1 suppresses KLF5-dependent promoter activation. Additionally, overexpression of HDAC1 suppressed KLF5-dependent activation of its endogenous downstream gene, platelet-derived growth factor-A chain gene, when activated by phorbol ester. Further, HDAC1 binds to the first zinc finger of KLF5, which is the same region where p300 interacts with KLF5 and, intriguingly, HDAC1 inhibits binding of p300 to KLF5. Direct competitive interaction between acetylase and deacetylase has been hitherto unknown. Collectively, the transcription factor KLF5 is negatively regulated by the deacetylase HDAC1 through direct effects on its activities (DNA binding activity, promoter activation) and further through inhibition of interaction with p300. These findings suggest a novel role and mechanism for regulation of transcription by deacetylase.


Journal of Biological Chemistry | 2007

Functional interaction between the transcription factor Krüppel-like factor 5 and poly(ADP-ribose) polymerase-1 in cardiovascular apoptosis.

Toru Suzuki; Toshiya Nishi; Tomoko Nagino; Kana Sasaki; Kenichi Aizawa; Nanae Kada; Daigo Sawaki; Yoshiko Munemasa; Takayoshi Matsumura; Shinsuke Muto; Masataka Sata; Kiyoshi Miyagawa; Masami Horikoshi; Ryozo Nagai

Krüppel-like factor 5 (KLF5) is a transcription factor important in regulation of the cardiovascular response to external stress. KLF5 regulates pathological cell growth, and its acetylation is important for this effect. Its mechanisms of action, however, are still unclear. Analysis in KLF5-deficient mice showed that KLF5 confers apoptotic resistance in vascular lesions. Mechanistic analysis further showed that it specifically interacts with poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme important in DNA repair and apoptosis. KLF5 interacted with a proteolytic fragment of PARP-1, and acetylation of KLF5 under apoptotic conditions increased their affinity. Moreover, KLF5 wild-type (but not a non-acetylatable point mutant) inhibited apoptosis as induced by the PARP-1 fragment. Collectively, we have found that KLF5 regulates apoptosis and targets PARP-1, and further, for acetylation to regulate these effects. Our findings thus implicate functional interaction between the transcription factor KLF5 and PARP-1 in cardiovascular apoptosis.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2008

Effect of leucine-to-methionine substitutions on the diffraction quality of histone chaperone SET/TAF-Iβ/INHAT crystals

Miki Senda; Shinsuke Muto; Masami Horikoshi; Toshiya Senda

One of the most frequent problems in crystallization is poor quality of the crystals. In order to overcome this obstacle several methods have been utilized, including amino-acid substitutions of the target protein. Here, an example is presented of crystal-quality improvement by leucine-to-methionine substitutions. A variant protein with three amino-acid substitutions enabled improvement of the crystal quality of the histone chaperone SET/TAF-Ibeta/INHAT when combined with optimization of the cryoconditions. This procedure improved the resolution of the SET/TAF-Ibeta/INHAT crystals from around 5.5 to 2.3 A without changing the crystallization conditions.


Acta Crystallographica Section D-biological Crystallography | 2004

Purification, crystallization and preliminary X-ray diffraction analysis of human oncoprotein SET/TAF-1β

Shinsuke Muto; Miki Senda; Naruhiko Adachi; Toru Suzuki; Ryozo Nagai; Toshiya Senda; Masami Horikoshi

The human oncoprotein SET/TAF-1beta has been crystallized by the sitting-drop vapour-diffusion method using ammonium sulfate as a precipitant. The crystal belongs to space group C2, with unit-cell parameters a = 119.6, b = 62.8, c = 61.0 A, beta = 89.7 degrees, and contains two molecules in the asymmetric unit. A complete data set was collected to 2.8 A resolution using synchrotron radiation.


Acta Crystallographica Section D-biological Crystallography | 2004

Purification, crystallization and preliminary X-ray diffraction analysis of Methanococcus jannaschii TATA box-binding protein (TBP)

Naruhiko Adachi; Ryo Natsume; Miki Senda; Shinsuke Muto; Toshiya Senda; Masami Horikoshi

TATA box-binding protein (TBP) from Methanococcus jannaschii has been crystallized by the hanging-drop vapour-diffusion method using PEG MME 2000 as a precipitant. The crystal belongs to space group P21, with unit-cell parameters a = 53.2, b = 55.5, c = 123.4 A,a = 90.0, fi = 91.0, y = 90.0 degrees, and contains four molecules in the asymmetric unit. A data set was collected to 1.9 A resolution using synchrotron radiation. A molecular-replacement solution was found using the structure of TBP from Sulfolobus acidocaldarius as a model. Crystallographic refinement is in progress.


Archive | 2007

Gene Selectors Consisting of DNA-Binding Proteins, Histories, and Histone-Binding Proteins Regulate the Three Major Stages of Gene Expression

Shinsuke Muto; Horikoshi Masami

Gene expression is the process whereby DNA sequence information is converted into a functional transmitter or player, namely, mRNA, and then a major functional player, namely, protein. Transcription is the first step in gene expression. Since the temporal and spatial regulation of gene expression define cellular identity, transcription is the most critical and fundamental step in the cellular functions of a gene. We have classified transcriptional regulation into three functional stages on the basis of the complexity of the DNA structures involved. The first level concerns the activation/inactivation of promoters on naked DNA, the second level entails activation/inactivation of nucleosomes, while the third level involves the activation/inactivation of chromosomal regions (Fig. 1). We denote the components that determine which genes are activated or repressed at each of these levels as “gene selectors.” We have categorized the gene selectors into three main groups, namely, DNA-binding proteins, histones (non-specific DNA-binding proteins), and histone-binding proteins. These three types of gene selectors work in cooperation to select the genes that are to be expressed (Fig. 2).


Briefings in Functional Genomics and Proteomics | 2006

Simple histone acetylation plays a complex role in the regulation of gene expression.

Hiroki Fukuda; Norihiko Sano; Shinsuke Muto; Masami Horikoshi


Journal of Biological Chemistry | 2003

Functional Interaction of the DNA-binding Transcription Factor Sp1 through Its DNA-binding Domain with the Histone Chaperone TAF-I

Toru Suzuki; Shinsuke Muto; Saku Miyamoto; Kenichi Aizawa; Masami Horikoshi; Ryozo Nagai

Collaboration


Dive into the Shinsuke Muto's collaboration.

Top Co-Authors

Avatar

Ryozo Nagai

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toru Suzuki

Tokyo University of Marine Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasushi Imai

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge