Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shinto K. John is active.

Publication


Featured researches published by Shinto K. John.


PLOS ONE | 2010

Emerging Infectious Disease Leads to Rapid Population Declines of Common British Birds

Robert A. Robinson; Becki Lawson; Mike P. Toms; Kirsi M. Peck; James K. Kirkwood; Julian Chantrey; Innes R. Clatworthy; Andy D. Evans; Laura A. Hughes; Oliver Clyde Hutchinson; Shinto K. John; T. W. Pennycott; Matthew W. Perkins; Peter S. Rowley; Vic Simpson; Kevin M. Tyler; Andrew A. Cunningham

Emerging infectious diseases are increasingly cited as threats to wildlife, livestock and humans alike. They can threaten geographically isolated or critically endangered wildlife populations; however, relatively few studies have clearly demonstrated the extent to which emerging diseases can impact populations of common wildlife species. Here, we report the impact of an emerging protozoal disease on British populations of greenfinch Carduelis chloris and chaffinch Fringilla coelebs, two of the most common birds in Britain. Morphological and molecular analyses showed this to be due to Trichomonas gallinae. Trichomonosis emerged as a novel fatal disease of finches in Britain in 2005 and rapidly became epidemic within greenfinch, and to a lesser extent chaffinch, populations in 2006. By 2007, breeding populations of greenfinches and chaffinches in the geographic region of highest disease incidence had decreased by 35% and 21% respectively, representing mortality in excess of half a million birds. In contrast, declines were less pronounced or absent in these species in regions where the disease was found in intermediate or low incidence. Also, populations of dunnock Prunella modularis, which similarly feeds in gardens, but in which T. gallinae was rarely recorded, did not decline. This is the first trichomonosis epidemic reported in the scientific literature to negatively impact populations of free-ranging non-columbiform species, and such levels of mortality and decline due to an emerging infectious disease are unprecedented in British wild bird populations. This disease emergence event demonstrates the potential for a protozoan parasite to jump avian host taxonomic groups with dramatic effect over a short time period.


Infection, Genetics and Evolution | 2011

A clonal strain of Trichomonas gallinae is the aetiologic agent of an emerging avian epidemic disease

Becki Lawson; Andrew A. Cunningham; Julian Chantrey; Laura A. Hughes; Shinto K. John; Nancy Bunbury; Diana Bell; Kevin M. Tyler

Trichomonas gallinae is a protozoan parasite that is well characterised as a cause of trichomonosis in columbid and raptor species world-wide. The parasite emerged as a novel infection of British passerines in 2005, leading to epidemic mortality associated with significant declines of breeding populations of greenfinches (Carduelis chloris) and chaffinches (Fringilla coelebs). We characterised the extent of T. gallinae genotypic heterogeneity within the affected wild British avifauna by analysing individual isolates from 17 of the species affected. To do so, we employed improved platform-based multilocus typing tools as well as the hydrogenosomal Fe-hydrogenase gene as a single marker locus for fine-typing. We found no evidence of heterogeneity amongst the parasites infecting British passerines, indicating that a clonal strain of T. gallinae is the causative agent of this emerging infectious disease.


Applied and Environmental Microbiology | 2011

Pulsed-Field Gel Electrophoresis Supports the Presence of Host-Adapted Salmonella enterica subsp. enterica Serovar Typhimurium Strains in the British Garden Bird Population

Becki Lawson; Laura A. Hughes; T M Peters; Elizabeth de Pinna; Shinto K. John; Shaheed K. Macgregor; Andrew A. Cunningham

ABSTRACT Salmonellosis is a frequently diagnosed infectious disease of passerine birds in garden habitats within Great Britain with potential implications for human and domestic animal health. Postmortem examinations were performed on 1,477 garden bird carcasses of circa 50 species from England and Wales, 1999 to 2007 inclusive. Salmonellosis was confirmed in 263 adult birds of 10 passerine species in this 11-year longitudinal study. A subset of 124 fully biotyped Salmonella enterica subsp. enterica serovar Typhimurium isolates was examined using pulsed-field gel electrophoresis to investigate the hypothesis that these strains are host adapted and to determine whether this molecular technique offers greater resolution in understanding the epidemiology of Salmonella Typhimurium infection than phage typing alone. For the two most common phage types, definitive type (DT) 40 and DT56v, which together accounted for 97% (120/124) of isolates, pulsed-field gel electrophoresis groupings closely correlated with phage type with remarkably few exceptions. A high degree of genetic similarity (>90%) was observed within and between the two most common pulsed-field gel electrophoresis groups. No clustering or variation was found in the pulsed-field gel electrophoresis groupings by bird species, year, or geographical region beyond that revealed by phage typing. These findings support the hypothesis that there are currently two host-adapted Salmonella phage types, S. Typhimurium DT40 and DT56v, circulating widely in British garden birds and that the reservoir of infection is maintained within wild bird populations. Large-scale multilocus sequence typing studies are required to further investigate the epidemiology of this infection.


Ecohealth | 2011

Evidence of Spread of the Emerging Infectious Disease, Finch Trichomonosis, by Migrating birds

Becki Lawson; Robert A. Robinson; Aleksija Neimanis; Kjell Handeland; Marja Isomursu; Erik Ågren; Inger Sofie Hamnes; Kevin M. Tyler; Julian Chantrey; Laura A. Hughes; T. W. Pennycott; Vic Simpson; Shinto K. John; Kirsi M. Peck; Mike P. Toms; M. Bennett; James K. Kirkwood; Andrew A. Cunningham

Finch trichomonosis emerged in Great Britain in 2005 and led to epidemic mortality and a significant population decline of greenfinches, Carduelis chloris and chaffinches, Fringilla coelebs, in the central and western counties of England and Wales in the autumn of 2006. In this article, we show continued epidemic spread of the disease with a pronounced shift in geographical distribution towards eastern England in 2007. This was followed by international spread to southern Fennoscandia where cases were confirmed at multiple sites in the summer of 2008. Sequence data of the ITS1/5.8S/ITS2 ribosomal region and part of the small subunit (SSU) rRNA gene showed no variation between the British and Fennoscandian parasite strains of Trichomonas gallinae. Epidemiological and historical ring return data support bird migration as a plausible mechanism for the observed pattern of disease spread, and suggest the chaffinch as the most likely primary vector. This finding is novel since, although intuitive, confirmed disease spread by migratory birds is very rare and, when it has been recognised, this has generally been for diseases caused by viral pathogens. We believe this to be the first documented case of the spread of a protozoal emerging infectious disease by migrating birds.


Parasitology | 2013

The finch epidemic strain of Trichomonas gallinae is predominant in British non-passerines.

Jean F. Chi; Becki Lawson; Chris Durrant; Katie Beckmann; Shinto K. John; Abdulwahed F. Alrefaei; Kim Kirkbride; Diana Bell; Andrew A. Cunningham; Kevin M. Tyler

Avian trichomonosis, caused by the flagellated protozoan Trichomonas gallinae, is a recently emerged infectious disease of British passerines. The aetiological agent, a clonal epidemic strain of the parasite, has caused unprecedented finch mortality and population-level declines in Britain and has since spread to continental Europe. To better understand the potential origin of this epidemic and to further investigate its host range, T. gallinae DNA extracts were collected from parasite culture and tissue samples from a range of avian species in Britain. Sequence typing at the ITS1/5.8S rRNA/ITS2 region resolved three distinct ITS region types circulating in free-ranging British birds. Subtyping by sequence analyses at the Fe-hydrogenase gene demonstrated further strain variation within these ITS region types. The UK finch epidemic strain was preponderant amongst columbids sampled, however, wide strain diversity was encountered in isolates from a relatively small number of pigeons, suggesting further strains present in columbid populations across the UK are yet to be identified. Fe-hydrogenase gene sequence data in isolates from birds of prey with disease were predominantly identical to the UK finch epidemic strain, demonstrating its presence as a virulent strain in UK birds of prey since at least 2009.


PLOS ONE | 2014

Epidemiological Evidence That Garden Birds Are a Source of Human Salmonellosis in England and Wales

Becki Lawson; Elizabeth de Pinna; Robert Horton; Shaheed K. Macgregor; Shinto K. John; Julian Chantrey; J. Paul Duff; James K. Kirkwood; Victor R. Simpson; Robert A. Robinson; John Wain; Andrew A. Cunningham

The importance of wild bird populations as a reservoir of zoonotic pathogens is well established. Salmonellosis is a frequently diagnosed infectious cause of mortality of garden birds in England and Wales, predominantly caused by Salmonella enterica subspecies enterica serovar Typhimurium definitive phage types 40, 56(v) and 160. In Britain, these phage types are considered highly host-adapted with a high degree of genetic similarity amongst isolates, and in some instances are clonal. Pulsed field gel electrophoresis, however, demonstrated minimal variation amongst matched DT40 and DT56(v) isolates derived from passerine and human incidents of salmonellosis across England in 2000–2007. Also, during the period 1993–2012, similar temporal and spatial trends of infection with these S. Typhimurium phage types occurred in both the British garden bird and human populations; 1.6% of all S. Typhimurium (0.2% of all Salmonella) isolates from humans in England and Wales over the period 2000–2010. These findings support the hypothesis that garden birds act as the primary reservoir of infection for these zoonotic bacteria. Most passerine salmonellosis outbreaks identified occurred at and around feeding stations, which are likely sites of public exposure to sick or dead garden birds and their faeces. We, therefore, advise the public to practise routine personal hygiene measures when feeding wild birds and especially when handling sick wild birds.


Ecohealth | 2014

Chlamydiosis in British Garden Birds (2005–2011): Retrospective Diagnosis and Chlamydia psittaci Genotype Determination

K.M. Beckmann; Nicole Borel; Ann Pocknell; Mark P. Dagleish; Konrad Sachse; Shinto K. John; Andreas Pospischil; Andrew A. Cunningham; Becki Lawson

The significance of chlamydiosis as a cause of mortality in wild passerines (Order Passeriformes), and the role of these birds as a potential source of zoonotic Chlamydia psittaci infection, is unknown. We reviewed wild bird mortality incidents (2005–2011). Where species composition or post-mortem findings were indicative of chlamydiosis, we examined archived tissues for C. psittaci infection using PCR and ArrayTube Microarray assays. Twenty-one of 40 birds tested positive: 8 dunnocks (Prunella modularis), 7 great tits (Parus major), 3 blue tits (Cyanistes caeruleus), 2 collared doves (Streptopelia decaocto, Order Columbiformes), and 1 robin (Erithacus rubecula). Chlamydia psittaci genotype A was identified in all positive passerines and in a further three dunnocks and three robins diagnosed with chlamydiosis from a previous study. Two collared doves had genotype E. Ten of the 21 C. psittaci-positive birds identified in the current study had histological lesions consistent with chlamydiosis and co-localizing Chlamydia spp. antigens on immunohistochemistry. Our results indicate that chlamydiosis may be a more common disease of British passerines than was previously recognized. Wild passerines may be a source of C. psittaci zoonotic infection, and people should be advised to take appropriate hygiene precautions when handling bird feeders or wild birds.


Veterinary Journal | 2011

Acute necrotising pneumonitis associated with Suttonella ornithocola infection in tits (Paridae).

Becki Lawson; Henry Malnick; T. W. Pennycott; Shaheed K. Macgregor; Shinto K. John; Gwen Duncan; Laura A. Hughes; Julian Chantrey; Andrew A. Cunningham

Suttonella ornithocola, first isolated from the lungs of British tit species in 1996, was found to be a novel bacterium belonging to the family Cardiobacteriaceae. Comprehensive surveillance of garden bird mortality across Great Britain between April 2005 and April 2009 involved post mortem and microbiological examination of 82 tits (Paridae; multiple species) and six long-tailed tits (Aegithalidae; Aegithalos caudatus). S. ornithocola was isolated from six birds submitted from six incidents of morbidity and mortality involving Paridae and Aegithalidae species with a wide geographical distribution. The mortality incidents occurred sporadically at low incidence throughout the study period, which suggested that the infection is endemic in native bird populations, with a seasonal peak during early spring. Histopathological examination showed multiple foci of acute pulmonary necrosis associated with gram-negative cocco-bacillary bacteria. These findings supported the hypothesis that S. ornithocola is a primary pathogen of tits in Great Britain.


Ecohealth | 2015

Streptococcus pyogenes Infection in a Free-Living European Hedgehog (Erinaceus europaeus)

Lydia H. V. Franklinos; Androulla Efstratiou; Shaheed K. Macgregor; Shinto K. John; Timothy Hopkins; Andrew A. Cunningham; Becki Lawson

Streptococcus pyogenes, a common pathogen of humans, was isolated from the carcass of a free-living European hedgehog (Erinaceus europaeus) found in northern England in June 2014. The animal had abscessation of the deep right cervical lymph node, mesenteric lymph nodes and liver. The S. pyogenes strain isolated from the lesions, peritoneal and pleural cavities was characterised as emm 28, which can be associated with invasive disease in humans. This is the first known report of S. pyogenes in a hedgehog and in any free-living wild animal that has been confirmed by gene sequencing. As close associations between wild hedgehogs and people in England are common, we hypothesise that this case might have resulted from anthroponotic infection.


Parasitology | 2016

Detection of the European epidemic strain of Trichomonas gallinae in finches, but not other non-columbiformes, in the absence of macroscopic disease.

Erasmus K.H.J. Zu Ermgassen; Chris Durrant; Shinto K. John; Roxanne Gardiner; Abdulwahed F. Alrefaei; Andrew A. Cunningham; Becki Lawson

Finch trichomonosis is an emerging infectious disease affecting European passerines caused by a clonal strain of Trichomonas gallinae. Migrating chaffinches (Fringilla coelebs) were proposed as the likely vector of parasite spread from Great Britain to Fennoscandia. To test for such parasite carriage, we screened samples of oesophagus/crop from 275 Apodiform, Passeriform and Piciform birds (40 species) which had no macroscopic evidence of trichomonosis (i.e. necrotic ingluvitis). These birds were found dead following the emergence of trichomonosis in Great Britain, 2009-2012, and were examined post-mortem. Polymerase chain reactions were used to detect (ITS1/5·8S rRNA/ITS2 region and single subunit rRNA gene) and to subtype (Fe-hydrogenase gene) T. gallinae. Trichomonas gallinae was detected in six finches [three chaffinches, two greenfinches (Chloris chloris) and a bullfinch (Pyrrhula pyrrhula)]. Sequence data had 100% identity to the European finch epidemic A1 strain for each species. While these results are consistent with finches being vectors of T. gallinae, alternative explanations include the presence of incubating or resolved T. gallinae infections. The inclusion of histopathological examination would help elucidate the significance of T. gallinae infection in the absence of macroscopic lesions.

Collaboration


Dive into the Shinto K. John's collaboration.

Top Co-Authors

Avatar

Andrew A. Cunningham

Zoological Society of London

View shared research outputs
Top Co-Authors

Avatar

Becki Lawson

Zoological Society of London

View shared research outputs
Top Co-Authors

Avatar

Shaheed K. Macgregor

Zoological Society of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin M. Tyler

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Robert A. Robinson

British Trust for Ornithology

View shared research outputs
Top Co-Authors

Avatar

Mike P. Toms

British Trust for Ornithology

View shared research outputs
Top Co-Authors

Avatar

T. W. Pennycott

Scottish Agricultural College

View shared research outputs
Top Co-Authors

Avatar

Chris Durrant

Zoological Society of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge