Shiow Fern Ng
National University of Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shiow Fern Ng.
International Journal of Pharmaceutics | 2012
Hnin Ei Thu; Mohd Hanif Zulfakar; Shiow Fern Ng
The aims of this research were to develop a novel bilayer hydrocolloid film based on alginate and to investigate its potential as slow-release wound healing vehicle. The bilayer is composed of an upper layer impregnated with model drug (ibuprofen) and a drug-free lower layer, which acted as a rate-controlling membrane. The thickness uniformity, solvent loss, moisture vapour transmission rate (MVTR), hydration rate, morphology, rheology, mechanical properties, in vitro drug release and in vivo wound healing profiles were investigated. A smooth bilayer film with two homogenous distinct layers was produced. The characterisation results showed that bilayer has superior mechanical and rheological properties than the single layer films. The bilayers also showed low MVTR, slower hydration rate and lower drug flux in vitro compared to single layer inferring that bilayer may be useful for treating low suppurating wounds and suitable for slow release application on wound surfaces. The bilayers also provided a significant higher healing rate in vivo, with well-formed epidermis with faster granulation tissue formation when compared to the controls. In conclusions, a novel alginate-based bilayer hydrocolloid film was developed and results suggested that they can be exploited as slow-release wound dressings.
Carbohydrate Polymers | 2016
Masoud Rezvanian; Mohd Cairul Iqbal Mohd Amin; Shiow Fern Ng
Previously, studies have demonstrated that topical application of simvastatin can promote wound healing in diabetic mice via augmentation of angiogenesis and lymphangiogenesis. This study aimed to formulate and characterize simvastatin in alginate-based composite film wound dressings. Biopolymers used for composite films were sodium alginate blended with pectin or gelatin. The films were prepared and characterized based on their physical properties, surface morphology, mechanical strength and rheology. Then, in vitro drug releases from the films were investigated and, finally, the cell viability assay was performed to assess the cytotoxicity profile. From the pre-formulation studies, alginate/pectin composite film showed to possess desirable wound dressing properties and superior mechanical properties. The in vitro drug release profile revealed that alginate/pectin film produced a controlled release drug profile, and cell viability assay showed that the film was non-toxic. In summary, alginate/pectin composite film is suitable to be formulated with simvastatin as a potential wound dressing.
International Journal of Pharmaceutics | 2013
Hnin Ei Thu; Shiow Fern Ng
In our previous study, a novel alginate-based bilayer film for slow-release wound dressings was successfully developed. We found that alginate alone yielded poor films; however, the addition of gelatine had significantly enhanced the drug dispersion as well as the physical properties. Here, an investigation of the drug-polymer interactions in the bilayer films was carried out. Drug content uniformity test and microscopy observation revealed that the addition of gelatine generated bilayer films with a homogenous drug distribution within the matrix. The FTIR and XRD data showed an increase in film crystallinity which might infer the presence of drug-polymer crystalline microaggregates in the films. DSC confirmed the drug-polymer interaction and indicated that the gelatine has no effect on the thermal behaviour of the microaggregates, suggesting the compatibility of the drug and excipients in the bilayer films. In conclusion, the addition of gelatine can promote homogenous dispersion of hydrophobic drugs in alginate films possibly through the formation of crystalline microaggregates.
Colloids and Surfaces B: Biointerfaces | 2017
Zahid Hussain; Hnin Ei Thu; Shiow Fern Ng; Shahzeb Khan; Haliza Katas
Wound healing is a multifarious and vibrant process of replacing devitalized and damaged cellular structures, leading to restoration of the skins barrier function, re-establishment of tissue integrity, and maintenance of the internal homeostasis. Curcumin (CUR) and its analogs have gained widespread recognition due to their remarkable anti-inflammatory, anti-infective, anticancer, immunomodulatory, antioxidant, and wound healing activities. However, their pharmaceutical significance is limited due to inherent hydrophobic nature, poor water solubility, low bioavailability, chemical instability, rapid metabolism and short half-life. Owing to their pharmaceutical limitations, newer strategies have been attempted in recent years aiming to mitigate problems related to the effective delivery of curcumanoids and to improve their wound healing potential. These advanced strategies include nanovesicles, polymeric micelles, conventional liposomes and hyalurosomes, nanocomposite hydrogels, electrospun nanofibers, nanohybrid scaffolds, nanoconjugates, nanostructured lipid carriers (NLCs), nanoemulsion, nanodispersion, and polymeric nanoparticles (NPs). The superior wound healing activities achieved after nanoencapsulation of the CUR are attributed to its target-specific delivery, longer retention at the target site, avoiding premature degradation of the encapsulated cargo and the therapeutic superiority of the advanced delivery systems over the conventional delivery. We have critically reviewed the literature and summarize the convincing evidence which explore the pharmaceutical significance and therapeutic feasibility of the advanced delivery systems in improving wound healing activities of the CUR and its analogs.
Journal of Pharmaceutical Sciences | 2015
Muhammad Irfan Siddique; Haliza Katas; Mohd Cairul Iqbal Mohd Amin; Shiow Fern Ng; Mohd Hanif Zulfakar; Fhataheya Buang; Adawiyah Jamil
Hydrocortisone (HC) is a topical glucocorticoid for the treatment of atopic dermatitis (AD); the local as well as systemic side effects limit its use. Hydroxytyrosol (HT) is a polyphenol present in olive oil that has strong antimicrobial and antioxidant activities. HC-HT coloaded chitosan nanoparticles (HC-HT CSNPs) were therefore developed to improve the efficacy against AD. In this study, HC-HT CSNPs of 235 ± 9 nm in size and with zeta potential +39.2 ± 1.6 mV were incorporated into aqueous cream (vehicle) and investigated for acute dermal toxicity, dermal irritation, and repeated dose toxicity using albino Wistar rats. HC-HT CSNPs exhibited LD50 > 125 mg/body surface area of active, which is 100-fold higher than the normal human dose of HC. Compared with the commercial formulation, 0.5 g of HC-HT CSNPs did not cause skin irritation, as measured by Tewameter®, Mexameter®, and as observed visually. Moreover, no-observed-adverse-effect level was observed with respect to body weight, organ weight, feed consumption, blood hematological and biochemical, urinalysis, and histopathological parameters at a dose of 1000 mg/body surface area per day of HC-HT CSNPs for 28 days. This in vivo study demonstrated that nanoencapsulation significantly reduced the toxic effects of HC and this should allow further clinical investigations.
International Journal of Pharmaceutics | 2016
Muhammad Irfan Siddique; Haliza Katas; Mohd Cairul Iqbal Mohd Amin; Shiow Fern Ng; Mohd Hanif Zulfakar; Adawiyah Jamil
The objective of this study was to investigate the in-vivo behavior of topically applied cationic polymeric chitosan nanoparticles (CSNPs) loaded with anti-inflammatory (hydrocortisone, HC) and antimicrobial (hydroxytyrosol, HT) drugs, to elucidate their skin targeting potential for the treatment of atopic dermatitis (AD). Compared to the commercial formulation, the HC-HT loaded CSNPs showed significantly improved drug penetration into the epidermal and dermal layers of albino Wistar rat skin without saturation. Dermal pharmacokinetic of CSNPs with a size of 228.5±7nm and +39±5mV charges revealed that they penetrated 2.46-fold deeper than the commercial formulation did, and had greater affinity at the skin target site without spreading to the surrounding tissues, thereby providing substantial safety benefits. In repeated dermal application toxicity studies, the HC-HT CSNPs showed no evidence of toxicity compared to the commercial formulation, which induced skin atrophy and higher liver enzyme levels. In conclusion, the positively charged HC-HT CSNP formulation exhibited promising local delivery and virtually no treatment-related toxicities, suggesting it may be an efficient and viable alternative for commercially available AD treatments.
Drug Development and Industrial Pharmacy | 2017
Shiow Fern Ng; Leong Seng Tan; Fhataheya Buang
Abstract Previous studies have shown that hydroxytyrosol (HT) can be a potential alternative therapeutic agent for the treatment of rheumatoid arthritis (RA). However, HT is extensively metabolized following oral administration, which leads to formulating HT in a topical vehicle to prolong drug action as well as to provide a localized effect. Hidrox-6 is a freeze-dried powder derived from fresh olives and contains a high amount of HT (∼3%) and other polyphenols. Alginate bilayer films containing 5% and 10% Hidrox-6 were formulated. The films were characterized with respect to their physical, morphology, rheological properties; drug content uniformity; and in vitro drug release. Acute dermal irritancy tests and a skin sensitization study were carried out in rats. An efficacy study of the bilayer films for RA was conducted using Freund’s adjuvant-induced polyarthritis rats. Animal data showed that the bilayer film formulations did not cause skin irritancy. The efficacy in vivo results showed that the Hidrox-6 bilayer films lowered the arthritic scores, paw and ankle circumference, serum IL-6 level and cumulative histological scores compared with those measured for controls. The topical Hidrox-6 bilayer films improve synovitis and inflammatory symptoms in RA and can be a potential alternative to oral RA therapy.
International Journal of Pharmaceutics | 2015
Shiow Fern Ng; Say Lee Tan
Topical chemotherapy is the application of cancer drugs directly onto the skin, which has become a standard treatment for basal cell carcinoma. Due to the promising results in the treatment of skin cancer, topical chemotherapy has recently been applied to breast cancer patients because some breast cancer tissues are only superficial. Hydroxytyrosol, a phenolic compound from olives that is present in high amounts in Hidrox(®) olive extract, has been shown to have a protective effect on normal cells and selective antitumor activities on cancerous cells. The aims of the present study were to develop an alginate bilayer film containing Hidrox(®) and to investigate its potential use as a topical chemotherapeutic agent. Alginate films were characterized for swelling and for physical, thermal, rheological, and mechanical properties. Drug content uniformity and in vitro drug release tests were also investigated. The alginate bilayer films containing Hidrox(®), HB2, showed controlled release of hydroxytyrosol at a flux of 0.094±0.009 mg/cm(2)/h. The results of the cytotoxic assay showed that the HB2 films were dose-dependent and could significantly reduce the growth of breast cancer cells (MCF-7) at 150 μg/mL for a cell viability of 29.34±4.64%. In conclusion, an alginate bilayer film containing Hidrox(®) can be a potential alternative for topical chemotherapeutic agent for skin and breast cancer treatment.
Drug Development and Industrial Pharmacy | 2016
Masoud Rezvanian; Chin Khai Tan; Shiow Fern Ng
Abstract Wafers are an established drug delivery system for application to suppurating wounds. They can absorb wound exudates and are converted into a gel, offering a moist environment that is vital for wound healing. Simvastatin-loaded lyophilized wafers were developed using sodium carboxymethyl cellulose (CMC) and methyl cellulose (MC) and evaluated for their potential in the management of chronic wounds. Simvastatin (SIM) was chosen as the model drug since it is known to accelerate wound healing by promoting angiogenesis and lymphangiogenesis. Pre-formulation studies were carried out with CMC, MC, and a mixture of CMC and MC. Wafers obtained from aqueous gels of 3% CMC and blend of CMC-MC in the % weight ratio of 2:1 and 1.5:1.5 were selected for further analysis. The formulated wafers were characterized by microscopic examination, texture analysis, hydration test, rheological studies, FTIR spectroscopy, water vapor transmission and drug release test. Among the selected formulations, simvastatin-loaded CMC-MC (2:1) wafers exhibited the most desired characteristics for wound dressing application, such as good flexibility, hardness, sponginess, and viscosity. It showed a sustained drug release, which is desirable in wound healing, and was more appropriate for suppurating wounds. In conclusion, simvastatin-loaded CMC-MC (2:1) wafers showing potential for wound dressing applications were successfully developed.
Scientific Reports | 2018
Evelyn Yun Xi Loh; Najwa Mohamad; Mh Busra Fauzi; Min Hwei Ng; Shiow Fern Ng; Mohd Cairul Iqbal Mohd Amin
Bacterial cellulose (BC)/acrylic acid (AA) hydrogel has successfully been investigated as a wound dressing for partial-thickness burn wound. It is also a promising biomaterial cell carrier because it bears some resemblance to the natural soft tissue. This study assessed its ability to deliver human epidermal keratinocytes (EK) and dermal fibroblasts (DF) for the treatment of full-thickness skin lesions. In vitro studies demonstrated that BC/AA hydrogel had excellent cell attachment, maintained cell viability with limited migration, and allowed cell transfer. In vivo wound closure, histological, immunohistochemistry, and transmission electron microscopy evaluation revealed that hydrogel alone (HA) and hydrogel with cells (HC) accelerated wound healing compared to the untreated controls. Gross appearance and Masson’s trichrome staining indicated that HC was better than HA. This study suggests the potential application of BC/AA hydrogel with dual functions, as a cell carrier and wound dressing, to promote full-thickness wound healing.