Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shiping Lin is active.

Publication


Featured researches published by Shiping Lin.


Environmental Science & Technology | 2011

Carbon and Sulfur Cycling by Microbial Communities in a Gypsum-Treated Oil Sands Tailings Pond

Esther Ramos-Padrón; Sylvain Bordenave; Shiping Lin; Iyswarya Mani Bhaskar; Xiaoli Dong; Christoph W. Sensen; Joseph Fournier; Gerrit Voordouw; Lisa M. Gieg

Oil sands tailings ponds receive and store the solid and liquid waste from bitumen extraction and are managed to promote solids densification and water recycling. The ponds are highly stratified due to increasing solids content as a function of depth but can be impacted by tailings addition and removal and by convection due to microbial gas production. We characterized the microbial communities in relation to microbial activities as a function of depth in an active tailings pond routinely treated with gypsum (CaSO(4)·2H(2)O) to accelerate densification. Pyrosequencing of 16S rDNA gene sequences indicated that the aerobic surface layer, where the highest level of sulfate (6 mM) but no sulfide was detected, had a very different community profile than the rest of the pond. Deeper anaerobic layers were dominated by syntrophs (Pelotomaculum, Syntrophus, and Smithella spp.), sulfate- and sulfur-reducing bacteria (SRB, Desulfocapsa and Desulfurivibrio spp.), acetate- and H(2)-using methanogens, and a variety of other anaerobes that have been implicated in hydrocarbon utilization or iron and sulfur cycling. The SRB were most abundant from 10 to 14 mbs, bracketing the zone where the sulfate reduction rate was highest. Similarly, the most abundant methanogens and syntrophs identified as a function of depth closely mirrored the fluctuating methanogenesis rates. Methanogenesis was inhibited in laboratory incubations by nearly 50% when sulfate was supplied at pond-level concentrations suggesting that in situ sulfate reduction can substantially minimize methane emissions. Based on our data, we hypothesize that the emission of sulfide due to SRB activity in the gypsum treated pond is also limited due to its high solubility and oxidation in surface waters.


Environmental Science & Technology | 2009

Sulfide Remediation by Pulsed Injection of Nitrate into a Low Temperature Canadian Heavy Oil Reservoir

Gerrit Voordouw; Aleksandr A. Grigoryan; A. Lambo; Shiping Lin; Hyung Soo Park; Thomas R. Jack; Dennis Coombe; Bill Clay; Frank Zhang; Ryan Ertmoed; Kirk Miner; Joseph J. Arensdorf

Sulfide formation by oil field sulfate-reducing bacteria (SRB) can be diminished by the injection of nitrate, stimulating the growth of nitrate-reducing bacteria (NRB). We monitored the field-wide injection of nitrate into a low temperature (approximately 30 degrees C) oil reservoir in western Canada by determining aqueous concentrations of sulfide, sulfate, nitrate, and nitrite, as well as the activities of NRB in water samples from 3 water plants, 2 injection wells, and 15 production wells over 2 years. The injection water had a low sulfate concentration (approximately 1 mM). Nitrate (2.4 mM, 150 ppm) was added at the water plants. Its subsequent distribution to the injection wells gave losses of 5-15% in the pipeline system, indicating that most was injected. Continuous nitrate injection lowered the total aqueous sulfide output of the production wells by 70% in the first five weeks, followed by recovery. Batchwise treatment of a limited section of the reservoir with high nitrate eliminated sulfide from one production well with nitrate breakthrough. Subsequent, field-wide treatment with week-long pulses of 14 mM nitrate gave breakthrough at an additional production well. However, this trend was reversed when injection with a constant dose of 2.4 mM (150 ppm) was resumed. The results are explained by assuming growth of SRB near the injection wellbore due to sulfate limitation. Injection of a constant nitrate dose inhibits these SRB initially. However, because of the constant, low temperature of the reservoir, SRB eventually grow back in a zone further removed from the injection wellbore. The resulting zonation (NRB closest to and SRB further away from the injection wellbore) can be broken by batch-wise increases in the concentration of injected nitrate, allowing it to re-enter the SRB-dominated zone.


Applied and Environmental Microbiology | 2010

Ammonium Concentrations in Produced Waters from a Mesothermic Oil Field Subjected to Nitrate Injection Decrease through Formation of Denitrifying Biomass and Anammox Activity

Sabrina L. Cornish Shartau; Marcy Yurkiw; Shiping Lin; Aleksandr A. Grigoryan; A. Lambo; Hyung-Soo Park; Bart P. Lomans; Erwin van der Biezen; Mike S. M. Jetten; Gerrit Voordouw

ABSTRACT Community analysis of a mesothermic oil field, subjected to continuous field-wide injection of nitrate to remove sulfide, with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes indicated the presence of heterotrophic and sulfide-oxidizing, nitrate-reducing bacteria (hNRB and soNRB). These reduce nitrate by dissimilatory nitrate reduction to ammonium (e.g., Sulfurospirillum and Denitrovibrio) or by denitrification (e.g., Sulfurimonas, Arcobacter, and Thauera). Monitoring of ammonium concentrations in producing wells (PWs) indicated that denitrification was the main pathway for nitrate reduction in the field: breakthrough of nitrate and nitrite in two PWs was not associated with an increase in the ammonium concentration, and no increase in the ammonium concentration was seen in any of 11 producing wells during periods of increased nitrate injection. Instead, ammonium concentrations in produced waters decreased on average from 0.3 to 0.2 mM during 2 years of nitrate injection. Physiological studies with produced water-derived hNRB microcosms indicated increased biomass formation associated with denitrification as a possible cause for decreasing ammonium concentrations. Use of anammox-specific primers and cloning of the resulting PCR product gave clones affiliated with the known anammox genera “Candidatus Brocadia” and “Candidatus Kuenenia,” indicating that the anammox reaction may also contribute to declining ammonium concentrations. Overall, the results indicate the following: (i) that nitrate injected into an oil field to oxidize sulfide is primarily reduced by denitrifying bacteria, of which many genera have been identified by DGGE, and (ii) that perhaps counterintuitively, nitrate injection leads to decreasing ammonium concentrations in produced waters.


Environmental Microbiology | 2009

A genomic island of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough promotes survival under stress conditions while decreasing the efficiency of anaerobic growth

Shawna Johnston; Shiping Lin; Phoebe Lee; Sean M. Caffrey; Janine D. Wildschut; Johanna K. Voordouw; Sofia M. da Silva; Inês A. C. Pereira; Gerrit Voordouw

A 47 kb genomic island (GEI) bracketed by 50 bp direct repeats, containing 52 annotated genes, was found to delete spontaneously from the genome of Desulfovibrio vulgaris Hildenborough. The island contains genes for site-specific recombinases and transposases, rubredoxin:oxygen oxidoreductase-1 (Roo1) and hybrid cluster protein-1 (Hcp1), which promote survival in air and nitrite stress. The numbering distinguishes these from the Roo2 and Hcp2 homologues for which the genes are located elsewhere in the genome. Cells with and without the island (GEI(+) and GEI(-) cells respectively) were obtained by colony purification. GEI(-) cells arise in anaerobic cultures of colony-purified GEI(+) cells, indicating that the site-specific recombinases encoded by the island actively delete this region. GEI(+) cells survive better in microaerophilic conditions due to the presence of Roo1, whereas the Hcps appear to prevent inhibition by sulfur and polysulfide, which are formed by chemical reaction of sulfide and nitrite. Hence, the island confers resistance to oxygen and nitrite stress. However, GEI(-) cells have a higher growth rate in anaerobic media. Microarrays and enzyme activity stains indicated that the GEI(-) cells have increased expression of genes, which promote anaerobic energy conservation, explaining the higher growth rate. Hence, while lowering the efficiency of anaerobic metabolism, the GEI increases the fitness of D. vulgaris under stress conditions, a feature reminiscent of pathogenicity islands which allow more effective colonization of environments provided by the targeted hosts.


Applied Microbiology and Biotechnology | 2009

Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.

Shiping Lin; Federico F. Krause; Gerrit Voordouw

Nitrate, injected into oil fields, can oxidize sulfide formed by sulfate-reducing bacteria (SRB) through the action of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB). When reservoir rock contains siderite (FeCO3), the sulfide formed is immobilized as iron sulfide minerals, e.g. mackinawite (FeS). The aim of our study was to determine the extent to which oil field NR-SOB can oxidize or transform FeS. Because no NR-SOB capable of growth with FeS were isolated, the well-characterized oil field isolate Sulfurimonas sp. strain CVO was used. When strain CVO was presented with a mixture of chemically formed FeS and dissolved sulfide (HS−), it only oxidized the HS−. The FeS remained acid soluble and non-magnetic indicating that it was not transformed. In contrast, when the FeS was formed by adding FeCl2 to a culture of SRB which gradually produced sulfide, precipitating FeS, and to which strain CVO and nitrate were subsequently added, transformation of the FeS to a magnetic, less acid-soluble form was observed. X-ray diffraction and energy-dispersive spectrometry indicated the transformed mineral to be greigite (Fe3S4). Addition of nitrite to cultures of SRB, containing microbially formed FeS, was similarly effective. Nitrite reacts chemically with HS− to form polysulfide and sulfur (S0), which then transforms SRB-formed FeS to greigite, possibly via a sulfur addition pathway (3FeS + S0 → Fe3S4). Further chemical transformation to pyrite (FeS2) is expected at higher temperatures (>60°C). Hence, nitrate injection into oil fields may lead to NR-SOB-mediated and chemical mineral transformations, increasing the sulfide-binding capacity of reservoir rock. Because of mineral volume decreases, these transformations may also increase reservoir injectivity.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2008

Ferric iron reduction by Desulfovibrio vulgaris Hildenborough wild type and energy metabolism mutants

Hyung Soo Park; Shiping Lin; Gerrit Voordouw


International Symposium on Oilfield Chemistry | 2007

Use of Nitrate or Nitrite for the Management of the Sulfur Cycle in Oil and Gas Fields

Gerrit Voordouw; Brenton Buziak; Shiping Lin; Alexander Grigoriyan; Krista M. Kaster; Gary E. Jenneman; Joseph J. Arensdorf


Canadian International Petroleum Conference | 2009

Use of Calcium Sulfate to Accelerate Densification while Reducing Greenhouse Gas Emissions from Oil Sands Tailings Ponds

Sylvain Bordenave; E. Ramos; Shiping Lin; Gerrit Voordouw; Lisa M. Gieg; C. Guo; S. Wells


Canadian International Petroleum Conference | 2008

Souring Remediation by Field-Wide Nitrate Injection in an Alberta Oil Field

Aleksandr A. Grigoryan; A. Lambo; Shiping Lin; S.L. Cornish; Thomas R. Jack; Gerrit Voordouw

Collaboration


Dive into the Shiping Lin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Lambo

University of Calgary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge