Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shiqian Li is active.

Publication


Featured researches published by Shiqian Li.


Progress in Lipid Research | 2013

Oxysterol-binding proteins: sterol and phosphoinositide sensors coordinating transport, signaling and metabolism.

Vesa M. Olkkonen; Shiqian Li

Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a family of sterol and phosphoinositide binding proteins conserved in eukaryotes. The mechanisms of ORP function have remained incompletely understood. However, several ORPs are present at membrane contact sites and control the activity of enzymatic effectors or assembly of protein complexes, with impacts on signaling, vesicle transport, and lipid metabolism. An increasing number of protein interaction partners of ORPs have been identified, providing clues of their involvement in multiple aspects of cell regulation. The functions assigned for mammalian ORPs include coordination of sterol and sphingolipid metabolism and mitogenic signaling (OSBP), control of ER-late endosome (LE) contacts and LE motility (ORP1L), neutral lipid metabolism (ORP2), cell adhesion (ORP3), cholesterol eggress from LE (ORP5), macrophage lipid homeostasis, migration and high-density lipoprotein metabolism (ORP8), apolipoprotein B-100 secretion (ORP10), and adipogenesis (ORP11). The anti-proliferative ORPphilin compounds target OSBP and ORP4, revealing a function of ORPs in cell proliferation and survival. The Saccharomyces cerevisiae OSBP homologue (Osh) proteins execute multifaceted functions in sterol and sphingolipid homeostasis, post-Golgi vesicle transport, as well as phosphatidylinositol-4-phosphate and target of rapamycin complex 1 (TORC1) signaling. These observations identify ORPs as coordinators of lipid signals with an unforeseen variety of cellular processes.


The EMBO Journal | 2016

Seipin regulates ER–lipid droplet contacts and cargo delivery

Veijo T. Salo; Ilya Belevich; Shiqian Li; Leena Karhinen; Helena Vihinen; Corinne Vigouroux; Jocelyne Magré; Christoph Thiele; Maarit Hölttä-Vuori; Eija Jokitalo; Elina Ikonen

Seipin is an endoplasmic reticulum (ER) membrane protein implicated in lipid droplet (LD) biogenesis and mutated in severe congenital lipodystrophy (BSCL2). Here, we show that seipin is stably associated with nascent ER–LD contacts in human cells, typically via one mobile focal point per LD. Seipin appears critical for such contacts since ER–LD contacts were completely missing or morphologically aberrant in seipin knockout and BSCL2 patient cells. In parallel, LD mobility was increased and protein delivery from the ER to LDs to promote LD growth was decreased. Moreover, while growing LDs normally acquire lipid and protein constituents from the ER, this process was compromised in seipin‐deficient cells. In the absence of seipin, the initial synthesis of neutral lipids from exogenous fatty acid was normal, but fatty acid incorporation into neutral lipids in cells with pre‐existing LDs was impaired. Together, our data suggest that seipin helps to connect newly formed LDs to the ER and that by stabilizing ER–LD contacts seipin facilitates the incorporation of protein and lipid cargo into growing LDs in human cells.


Developmental Cell | 2013

LDL Cholesterol Recycles to the Plasma Membrane via a Rab8a-Myosin5b-Actin-Dependent Membrane Transport Route

Kristiina Kanerva; Riikka-Liisa Uronen; Tomas Blom; Shiqian Li; Robert Bittman; Pekka Lappalainen; Johan Peränen; Graça Raposo; Elina Ikonen

Mammalian cells acquire cholesterol, a major membrane constituent, via low-density lipoprotein (LDL) uptake. However, the mechanisms by which LDL cholesterol reaches the plasma membrane (PM) have remained obscure. Here, we applied LDL labeled with BODIPY cholesteryl linoleate to identify this pathway in living cells. The egress of BODIPY cholesterol (BC) from late endosomal (LE) organelles was dependent on acid lipase and Niemann-Pick C1 (NPC1) protein, as for natural cholesterol. We show that NPC1 was needed to recruit Rab8a to BC-containing LEs, and Rab8a enhanced the motility and segregation of BC- and CD63-positive organelles from lysosomes. The BC carriers docked to the cortical actin by a Rab8a- and Myosin5b (Myo5b)-dependent mechanism, typically in the proximity of focal adhesions (FAs). LDL increased the number and dynamics of FAs and stimulated cell migration in an acid lipase, NPC1, and Rab8a-dependent fashion, providing evidence that this cholesterol delivery route to the PM is important for cell movement.


PLOS ONE | 2011

OSBP-Related Protein 8 (ORP8) Regulates Plasma and Liver Tissue Lipid Levels and Interacts with the Nucleoporin Nup62

Tianhong Zhou; Shiqian Li; Wenbin Zhong; Terhi Vihervaara; Olivier Béaslas; Julia Perttilä; Wei Luo; Yingliang Jiang; Markku Lehto; Vesa M. Olkkonen; Daoguang Yan

We earlier identified OSBP-related protein 8 (ORP8) as an endoplasmic reticulum oxysterol-binding protein implicated in cellular lipid homeostasis. We now investigated its action in hepatic cells in vivo and in vitro. Adenoviral overexpression of ORP8 in mouse liver induced a decrease of cholesterol, phospholipids, and triglycerides in serum (−34%, −26%, −37%, respectively) and liver tissue (−40%, −12%, −24%), coinciding with reduction of nuclear (n)SREBP-1 and -2 and mRNA levels of their target genes. Consistently, excess ORP8 reduced nSREBPs in HuH7 cells, and ORP8 overexpression or silencing by RNA interference moderately suppressed or induced the expression of SREBP-1 and SREBP-2 target genes, respectively. In accordance, cholesterol biosynthesis was reduced by ORP8 overexpression and enhanced by ORP8 silencing in [3H]acetate pulse-labeling experiments. ORP8, previously shown to bind 25-hydroxycholesterol, was now shown to bind also cholesterol in vitro. Yeast two-hybrid, bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation analyses revealed the nuclear pore component Nup62 as an interaction partner of ORP8. Co-localization of ORP8 and Nup62 at the nuclear envelope was demonstrated by BiFC and confocal immunofluorescence microscopy. Furthermore, the impact of overexpressed ORP8 on nSREBPs and their target mRNAs was inhibited in cells depleted of Nup62. Our results reveal that ORP8 has the capacity to modulate lipid homeostasis and SREBP activity, probably through an indirect mechanism, and provide clues of an entirely new mode of ORP action.


Experimental Cell Research | 2010

OSBP-related protein 11 (ORP11) dimerizes with ORP9 and localizes at the Golgi–late endosome interface ☆ ☆☆

You Zhou; Shiqian Li; Mikko I. Mäyränpää; Wenbin Zhong; Nils Bäck; Daoguang Yan; Vesa M. Olkkonen

We characterize here ORP11, a member of the oxysterol-binding protein family. ORP11 is present at highest levels in human ovary, testis, kidney, liver, stomach, brain, and adipose tissue. Immunohistochemistry demonstrates abundant ORP11 in the epithelial cells of kidney tubules, testicular tubules, caecum, and skin. ORP11 in HEK293 cells resides on Golgi complex and LE, co-localizing with GFP-Rab9, TGN46, GFP-Rab7, and a fluorescent medial-trans-Golgi marker. Under electron microscopic observation, cells overexpressing ORP11 displayed lamellar lipid bodies associated with vacuolar structures or the Golgi complex, indicating a disturbance of lipid trafficking. N-terminal fragment of ORP11 (aa 1-292) localized partially to Golgi, but displayed enhanced localization on Rab7- and Rab9-positive LE, while the C-terminal ligand-binding domain (aa 273-747) was cytosolic, demonstrating that the membrane targeting determinants are N-terminal. Yeast two-hybrid screen revealed interaction of ORP11 with the related ORP9. The interacting region was delineated within aa 98-372 of ORP9 and aa 154-292 of ORP11. Overexpressed ORP9 was able to recruit EGFP-ORP11 to membranes, and ORP9 silencing inhibited ORP11 Golgi association. The results identify ORP11 as an OSBP homologue distributing at the Golgi-LE interface and define the ORP9-ORP11 dimer as a functional unit that may act as an intracellular lipid sensor or transporter.


Nature Communications | 2016

ORP4L is essential for T-cell acute lymphoblastic leukemia cell survival.

Wenbin Zhong; Qing Yi; Bing Xu; Shiqian Li; Tong Wang; Fupei Liu; Biying Zhu; Peter R. Hoffmann; Guangju Ji; Pingsheng Lei; Guoping Li; Jiwei Li; Jian Li; Vesa M. Olkkonen; Daoguang Yan

Metabolic pathways are reprogrammed in cancer to support cell survival. Here, we report that T-cell acute lymphoblastic leukemia (T-ALL) cells are characterized by increased oxidative phosphorylation and robust ATP production. We demonstrate that ORP4L is expressed in T-ALL but not normal T-cells and its abundance is proportional to cellular ATP. ORP4L acts as an adaptor/scaffold assembling CD3ɛ, Gαq/11 and PLCβ3 into a complex that activates PLCβ3. PLCβ3 catalyzes IP3 production in T-ALL as opposed to PLCγ1 in normal T-cells. Up-regulation of ORP4L thus results in a switch in the enzyme responsible for IP3-induced endoplasmic reticulum Ca2+ release and oxidative phosphorylation. ORP4L knockdown results in suboptimal bioenergetics, cell death and abrogation of T-ALL engraftment in vivo. In summary, we uncovered a signalling pathway operating specifically in T-ALL cells in which ORP4L mediates G protein-coupled ligand-induced PLCβ3 activation, resulting in an increase of mitochondrial respiration for cell survival. Targeting ORP4L might represent a promising approach for T-ALL treatment.


Journal of the American Heart Association | 2013

Increased Atherosclerotic Lesions in LDL Receptor Deficient Mice With Hematopoietic Nuclear Receptor Rev-erbα Knock- Down

Hongling Ma; Wenbin Zhong; Yingliang Jiang; Coralie Fontaine; Shiqian Li; Jiangnan Fu; Vesa M. Olkkonen; Bart Staels; Daoguang Yan

Background Nuclear receptor Rev‐erbα plays important roles in circadian clock timing, lipid metabolism, adipogenesis, and vascular inflammation. However, the role of Rev‐erbα in atherosclerotic lesion development has not been assessed in vivo. Methods and Results The nuclear receptor Rev‐erbα was knocked down in mouse haematopoietic cells by means of shRNA‐lentiviral transduction, followed by bone marrow transplantation into LDL receptor knockout mice. The Rev‐erbα protein in peripheral macrophage was reduced by 70% as compared to control mice injected with nontargeting shRNA lentivirus‐transduced bone marrow. A significant increase in atherosclerotic lesions was observed around the aorta valves as well as upon en face aorta analysis of Rev‐erbα knock‐down bone marrow recipients (P<0.01) as compared to the control mice, while plasma cholesterol, phospholipid, and triacylglycerol levels were not affected. Overexpression of Rev‐erbα in bone marrow mononuclear cells decreased inflammatory M1 while increasing M2 macrophage markers, while Rev‐erbα knock down increased the macrophage inflammatory phenotype in vitro and in vivo. Furthermore, treatment of differentiating macrophages with the Rev‐erbα ligand heme promoted expression of antiinflammatory M2 markers. Conclusions These observations identify hematopoietic cell Rev‐erbα as a new modulator of atherogenesis in mice.


American Journal of Pathology | 2015

Elevated Levels of StAR-Related Lipid Transfer Protein 3 Alter Cholesterol Balance and Adhesiveness of Breast Cancer Cells: Potential Mechanisms Contributing to Progression of HER2-Positive Breast Cancers

Boris Vassilev; Harri Sihto; Shiqian Li; Maarit Hölttä-Vuori; Jaakko Ilola; Johan Lundin; Jorma Isola; Pirkko-Liisa Kellokumpu-Lehtinen; Heikki Joensuu; Elina Ikonen

The STARD3 gene belongs to the minimal amplicon in HER2-positive breast cancers and encodes a cholesterol-binding membrane protein. To study how elevated StAR-related lipid transfer protein 3 (StARD3) expression affects breast cancer cells, we generated MCF-7 cells stably overexpressing StARD3-green fluorescent protein. We found that StARD3-overexpressing cells exhibited nonadherent morphological features, had increased Src levels, and had altered cholesterol balance, as evidenced by elevated mRNA levels of the cholesterol biosynthesis rate-limiting enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase, and increased plasma membrane cholesterol content. On removal of serum and insulin from the culture medium, the morphological characteristics of the StARD3-overexpressing cells changed, the cells became adherent, and they developed enlarged focal adhesions. Under these conditions, the StARD3-overexpressing cells maintained elevated Src and plasma membrane cholesterol content and showed increased phosphorylation of focal adhesion kinase. In two Finnish nationwide patient cohorts, approximately 10% (212/2220) breast cancers exhibited high StARD3 protein levels, which was strongly associated with HER2 amplification; several factors related to poor disease outcome and poor breast cancer-specific survival. In addition, high StARD3 levels in breast cancers were associated with elevated 3-hydroxy-3-methylglutaryl-coenzyme A reductase mRNA levels and anti-Src-Tyr416 immunoreactivity. These results provide evidence that StARD3 overexpression results in increased cholesterol biosynthesis and Src kinase activity in breast cancer cells and suggest that elevated StARD3 expression may contribute to breast cancer aggressiveness by increasing membrane cholesterol and enhancing oncogenic signaling.


Nature Chemical Biology | 2015

LAPTM4B facilitates late endosomal ceramide export to control cell death pathways

Tomas Blom; Shiqian Li; Andrea Dichlberger; Nils Bäck; Young Ah Kim; Ursula Loizides-Mangold; Howard Riezman; Robert Bittman; Elina Ikonen

Lysosome-associated protein transmembrane-4b (LAPTM4B) associates with poor prognosis in several cancers, but its physiological function is not well understood. Here we use novel ceramide probes to provide evidence that LAPTM4B interacts with ceramide and facilitates its removal from late endosomal organelles (LEs). This lowers LE ceramide in parallel with and independent of acid ceramidase-dependent catabolism. In LAPTM4B-silenced cells, LE sphingolipid accumulation is accompanied by lysosomal membrane destabilization. However, these cells resist ceramide-driven caspase-3 activation and apoptosis induced by chemotherapeutic agents or gene silencing. Conversely, LAPTM4B overexpression reduces LE ceramide and stabilizes lysosomes but sensitizes to drug-induced caspase-3 activation. Together, these data uncover a cellular ceramide export route from LEs and identify LAPTM4B as its regulator. By compartmentalizing ceramide, LAPTM4B controls key sphingolipid-mediated cell death mechanisms and emerges as a candidate for sphingolipid-targeting cancer therapies.


Experimental Cell Research | 2011

OSBP-related protein 7 interacts with GATE-16 and negatively regulates GS28 protein stability.

Wenbin Zhong; You Zhou; Shiqian Li; Tianhong Zhou; Hongling Ma; Kunde Wei; Hong-Ye Li; Vesa M. Olkkonen; Daoguang Yan

ORP7 is a member of oxysterol-binding protein (OSBP) family, the function of which has remained obscure. In this study, we identified by yeast two-hybrid screening an interaction partner of ORP7, GATE-16, which (i) regulates Golgi SNARE of 28kDa (GS28) function and stability, and (ii) plays a role in autophagosome biogenesis. The interaction was confirmed by bimolecular fluorescence complementation (BiFC) assay in living cells. The interacting regions were delineated within aa 1-142 of ORP7 and aa 30-117 of GATE-16. ORP7 knock-down in 293A cells resulted in a 40% increase of GS28 protein while ORP7 overexpression had the opposite effect (25% decrease of GS28). We show evidence that the regulation of GS28 by ORP7 does not occur at the level of transcription, but involves degradation of GS28 on proteasomes. Truncated ORP7 that lacks the GATE-16 binding region failed to affect GS28 stability, evidencing for specificity of the observed effect. Similar to ORP7 overexpression, treatment of cells with 25-hydroxycholesterol (25-OH) resulted in GS28 destabilization, which was potentiated by excess ORP7 and inhibited by ORP7 silencing. Overexpression of ORP7 led in most cells to formation of vacuolar structures positive for RFP-LC3, thus representing autophagic elements. Also GATE-16 was found in the vacuolar ORP7-positive elements, suggesting that excess ORP7 increases entrapment of GATE-16 in autophagosomes. Taken together, our results suggest that ORP7 negatively regulates GS28 protein stability via sequestration of GATE-16, and may mediate the effect of 25-OH on GS28 and Golgi function.

Collaboration


Dive into the Shiqian Li's collaboration.

Top Co-Authors

Avatar

Vesa M. Olkkonen

Minerva Foundation Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge