Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shireen-Anne Davies is active.

Publication


Featured researches published by Shireen-Anne Davies.


The Journal of Experimental Biology | 2008

A new role for a classical gene: White transports cyclic GMP

Jennifer M. Evans; Jonathan P. Day; Pablo Cabrero; Julian A. T. Dow; Shireen-Anne Davies

SUMMARY Guanosine 3′-5′ cyclic monophosphate (cGMP) and adenosine 3′-5′ cyclic monophosphate (cAMP) are important regulators of cell and tissue function. However, cGMP and cAMP transport have received relatively limited attention, especially in model organisms where such studies can be conducted in vivo. The Drosophila Malpighian (renal) tubule transports cGMP and cAMP and utilises these as signalling molecules. We show here via substrate competition and drug inhibition studies that cAMP transport – but not cGMP transport – requires the presence of di- or tri-carboxylates; and that transport of both cyclic nucleotides occurs via ATP binding cassette sub-family G2 (ABCG2), but not via ABC sub-family C (ABCC), transporters. In Drosophila, the white (w) gene is known for the classic eye colour mutation. However, gene expression data show that of all adult tissues, w is most highly expressed in Malpighian tubules. Furthermore, as White is a member of the ABCG2 transporter class, it is a potential candidate for a tubule cGMP transporter. Assay of cGMP transport in w– (mutant) tubules shows that w is required for cGMP transport but not cAMP transport. Targeted over-expression of w in w– tubule principal cells significantly increases cGMP transport compared with that in w– controls. Conversely, treatment of wild-type tubules with cGMP increases w mRNA expression levels, implying that cGMP is a physiologically relevant substrate for White. Immunocytochemical localisation reveals that White is expressed in intracellular vesicles in tubule principal cells, suggesting that White participates in vesicular transepithelial transport of cGMP.


Journal of Insect Physiology | 2012

Immune and stress response ‘cross-talk’ in the Drosophila Malpighian tubule

Shireen-Anne Davies; Gayle Overend; Sujith Sebastian; Maria Cundall; Pablo Cabrero; Julian A. T. Dow; Selim Terhzaz

The success of insects is in large part due to their ability to survive environmental stress, including heat, cold, and dehydration. Insects are also exposed to infection, osmotic or oxidative stress, and to xenobiotics or toxins. The molecular mechanisms of stress sensing and response have been widely investigated in mammalian cell lines, and the area of stress research is now so vast to be beyond the scope of a single review article. However, the mechanisms by which stress inputs to the organism are sensed and integrated at the tissue and cellular level are less well understood. Increasingly, common molecular events between immune and other stress responses are observed in vivo; and much of this work stems of efforts in insect molecular science and physiology. We describe here the current knowledge in the area of immune and stress signalling and response at the level of the organism, tissue and cell, focussing on a key epithelial tissue in insects, the Malpighian tubule, and drawing together the known pathways that modulate responses to different stress insults. The tubules are critical for insect survival and are increasingly implicated in responses to multiple and distinct stress inputs. Importantly, as tubule function is central to survival, they are potentially key targets for insect control, which will be facilitated by increased understanding of the complexities of stress signalling in the organism.


Physiological Genomics | 2009

Salty dog, an SLC5 symporter, modulates Drosophila response to salt stress

Konstantinos Stergiopoulos; Pablo Cabrero; Shireen-Anne Davies; Julian A. T. Dow

To regulate their internal environments, organisms must adapt to varying ion levels in their diet. Adult Drosophila were exposed to dietary salt stress, and their physiological, survival, and gene expression responses monitored. Insects continued to feed on NaCl-elevated diet, although levels >4% wt/vol ultimately proved fatal. Affymetrix microarray analysis of flies fed on diet containing elevated NaCl showed a phased response: the earliest response was widespread upregulation of immune genes, followed by upregulation of carbohydrate metabolism as the immune response was downregulated, then finally a switch to amino acid catabolism and inhibition of genes associated with the reproductive axis. Significantly, the online transcriptomic resource FlyAtlas reports that most of the modulated genes are predominantly expressed in hindgut or Malpighian (renal) tubule, implicating these excretory tissues as the major responders to salt stress. Three genes were selected for further study: the SLC5 symporter CG2196, the GLUT transporter CG6484, and the transcription factor sugarbabe (previously implicated in starvation and stress responses). Expression profiles predicted by microarray were validated by quantitative PCR (qPCR); expression was mapped to the alimentary canal by in situ hybridization. CG2196::eYFP overexpression constructs were localized to the basolateral membrane of the Malpighian (renal) tubules, and RNAi against CG2196 improved survival on high-salt diet, even when driven specifically to just principal cells of the Malpighian tubule, confirming both this tissue and this transporter as major determinants of survival upon salt stress. Accordingly, CG2196 was renamed salty dog (salt).


General and Comparative Endocrinology | 2009

Modulation of epithelial innate immunity by autocrine production of nitric oxide.

Shireen-Anne Davies; Julian A. T. Dow

Mechanisms of innate immunity especially with relevance to epithelial tissue, are currently the focus of intense research, as epithelial immunity greatly impacts on health and disease. However, many findings regarding innate immunity signalling pathways in vertebrates stems from research using the genetic model Drosophila melanogaster. Here we discuss the central importance of epithelial tissues in innate immunity in Drosophila; the modulation of the Imd pathway via autocrine production of nitric oxide (NO); and the central importance of the Malpighian (renal) tubule in immune function of the whole animal.


Insect Biochemistry and Molecular Biology | 2017

DINeR: Database for Insect Neuropeptide Research

Joseph G.C. Yeoh; Aniruddha Pandit; Meet Zandawala; Dick R. Nässel; Shireen-Anne Davies; Julian A. T. Dow

Neuropeptides are responsible for regulating a variety of functions, including development, metabolism, water and ion homeostasis, and as neuromodulators in circuits of the central nervous system. Numerous neuropeptides have been identified and characterized. However, both discovery and functional characterization of neuropeptides across the massive Class Insecta has been sporadic. To leverage advances in post-genomic technologies for this rapidly growing field, insect neuroendocrinology requires a consolidated, comprehensive and standardised resource for managing neuropeptide information. The Database for Insect Neuropeptide Research (DINeR) is a web-based database-application used for search and retrieval of neuropeptide information of various insect species detailing their isoform sequences, physiological functionality and images of their receptor-binding sites, in an intuitive, accessible and user-friendly format. The curated data includes representatives of 50 well described neuropeptide families from over 400 different insect species. Approximately 4700 FASTA formatted, neuropeptide isoform amino acid sequences and over 200 records of physiological functionality have been recorded based on published literature. Also available are images of neuropeptide receptor locations. In addition, the data include comprehensive summaries for each neuropeptide family, including their function, location, known functionality, as well as cladograms, sequence alignments and logos covering most insect orders. Moreover, we have adopted a standardised nomenclature to address inconsistent classification of neuropeptides. As part of the H2020 nEUROSTRESSPEP project, the data will be actively maintained and curated, ensuring a comprehensive and standardised resource for the scientific community. DINeR is publicly available at the project website: http://www.neurostresspep.eu/diner/.


PLOS ONE | 2012

The Nitric Oxide-Cyclic GMP Pathway Regulates FoxO and Alters Dopaminergic Neuron Survival in Drosophila

Tomoko Kanao; Tomoyo Sawada; Shireen-Anne Davies; Hiroshi Ichinose; Kazuko Hasegawa; Ryosuke Takahashi; Nobutaka Hattori; Yuzuru Imai

Activation of the forkhead box transcription factor FoxO is suggested to be involved in dopaminergic (DA) neurodegeneration in a Drosophila model of Parkinsons disease (PD), in which a PD gene product LRRK2 activates FoxO through phosphorylation. In the current study that combines Drosophila genetics and biochemical analysis, we show that cyclic guanosine monophosphate (cGMP)-dependent kinase II (cGKII) also phosphorylates FoxO at the same residue as LRRK2, and Drosophila orthologues of cGKII and LRRK2, DG2/For and dLRRK, respectively, enhance the neurotoxic activity of FoxO in an additive manner. Biochemical assays using mammalian cGKII and FoxO1 reveal that cGKII enhances the transcriptional activity of FoxO1 through phosphorylation of the FoxO1 S319 site in the same manner as LRRK2. A Drosophila FoxO mutant resistant to phosphorylation by DG2 and dLRRK (dFoxO S259A corresponding to human FoxO1 S319A) suppressed the neurotoxicity and improved motor dysfunction caused by co-expression of FoxO and DG2. Nitric oxide synthase (NOS) and soluble guanylyl cyclase (sGC) also increased FoxOs activity, whereas the administration of a NOS inhibitor L-NAME suppressed the loss of DA neurons in aged flies co-expressing FoxO and DG2. These results strongly suggest that the NO-FoxO axis contributes to DA neurodegeneration in LRRK2-linked PD.


Nature Communications | 2016

The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules.

Kenneth A. Halberg; Stephanie M. Rainey; Iben R. Veland; Helen Neuert; Anthony J. Dornan; Christian Klämbt; Shireen-Anne Davies; Julian A. T. Dow

Multicellular organisms rely on cell adhesion molecules to coordinate cell–cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border.


Insect Biochemistry and Molecular Biology | 2018

Coordinated RNA-Seq and peptidomics identify neuropeptides and G-protein coupled receptors (GPCRs) in the large pine weevil Hylobius abietis, a major forestry pest.

Aniruddha Pandit; Lapo Ragionieri; Richard Marley; Joseph G.C. Yeoh; Daegan J.G. Inward; Shireen-Anne Davies; Reinhard Predel; Julian A. T. Dow

Hylobius abietis (Linnaeus), or large pine weevil (Coleoptera, Curculionidae), is a pest of European coniferous forests. In order to gain understanding of the functional physiology of this species, we have assembled a de novo transcriptome of H. abietis, from sequence data obtained by Next Generation Sequencing. In particular, we have identified genes encoding neuropeptides, peptide hormones and their putative G-protein coupled receptors (GPCRs) to gain insights into neuropeptide-modulated processes. The transcriptome was assembled de novo from pooled paired-end, sequence reads obtained from RNA from whole adults, gut and central nervous system tissue samples. Data analysis was performed on the transcripts obtained from the assembly including, annotation, gene ontology and functional assignment as well as transcriptome completeness assessment and KEGG pathway analysis. Pipelines were created using Bioinformatics tools and techniques for prediction and identification of neuropeptides and neuropeptide receptors. Peptidomic analysis was also carried out using a combination of MALDI-TOF as well as Q-Exactive Orbitrap mass spectrometry to confirm the identified neuropeptide. 41 putative neuropeptide families were identified in H. abietis, including Adipokinetic hormone (AKH), CAPA and DH31. Neuropeptide F, which has not been yet identified in the model beetle T. castaneum, was identified. Additionally, 24 putative neuropeptide and 9 leucine-rich repeat containing G protein coupled receptor-encoding transcripts were determined using both alignment as well as non-alignment methods. This information, submitted to the NCBI sequence read archive repository (SRA accession: SRP133355), can now be used to inform understanding of neuropeptide-modulated physiology and behaviour in H. abietis; and to develop specific neuropeptide-based tools for H. abietis control.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1998

Hormonally controlled chloride movement across Drosophila tubules is via ion channels in stellate cells

M. J. O'donnell; M. R. Rheault; Shireen-Anne Davies; P. Rosay; Brian J. Harvey; S. H. P. Maddrell; Kim Kaiser; Julian A. T. Dow


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1995

CAP2b, a cardioacceleratory peptide, is present in Drosophila and stimulates tubule fluid secretion via cGMP

Shireen-Anne Davies; G. R. Huesmann; S. H. P. Maddrell; Michael J. O'Donnell; N. J. V. Skaer; Julian A. T. Dow; N. J. Tublitz

Collaboration


Dive into the Shireen-Anne Davies's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Dow

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge