Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shirjel Alam is active.

Publication


Featured researches published by Shirjel Alam.


Circulation | 2002

Increased Platelet Binding to Circulating Monocytes in Acute Coronary Syndromes

Jaydeep Sarma; Caterina A. Laan; Shirjel Alam; Ashwani Jha; Keith A.A. Fox; Ian Dransfield

Background—Present therapies for acute coronary syndromes aim toward limiting platelet–platelet adhesion and aggregation processes. However, platelet–leukocyte interactions may contribute importantly to disease progression in the arterial wall. Recent studies suggest that prevention of platelet–leukocyte binding via P-selectin glycoprotein ligand-1 (PSGL-1) may be beneficial in animal models of vascular injury. Methods and Results—P-selectin–PSGL-1 interactions were found to account for most platelet–monocyte binding observed in peripheral blood samples from healthy donors. However, a significant component of observed adhesion was calcium independent, involving neither PSGL-1 nor P-selectin. Platelet–monocyte interactions were examined in 52 patients admitted within 14 hours of symptom onset, with acute coronary syndromes defined as unstable angina (n=12) and acute myocardial infarction (n=13) or noncardiac chest pain (n=27). When compared with patients with noncardiac chest pain, significantly elevated levels of platelet–monocyte binding were found in patients with acute myocardial infarction (70.1±15.4% versus 45.4±23.3%;P <0.01) and unstable angina (67.4±12.9% versus 45.4±23.3%;P >0.01). Calcium-independent platelet–monocyte binding was significantly elevated in myocardial infarction patients alone (14.7±7.7% versus 6.1±5.96%;P <0.001). Conclusions—There is evidence for a significant P-selectin–independent molecular component to the platelet–monocyte conjugation observed in peripheral blood. Patients with myocardial infarction and unstable angina demonstrate increased total binding of platelets to monocytes. Additionally, calcium-independent adhesion was significantly elevated in patients with evidence of myocardial infarction. These findings demonstrate that novel cation-independent adhesion mechanisms may mediate platelet–monocyte binding, representing a new therapeutic target after vascular injury associated with myocardial infarction.


Circulation-cardiovascular Imaging | 2012

Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction: early clinical experience.

Shirjel Alam; Anoop Shah; Jennifer Richards; Ninian N. Lang; Gareth Barnes; Nikhil Joshi; Tom MacGillivray; Graham McKillop; Saeed Mirsadraee; John Payne; Keith A.A. Fox; Peter Henriksen; David E. Newby; Scott Semple

Background—Inflammation following acute myocardial infarction (MI) has detrimental effects on reperfusion, myocardial remodelling, and ventricular function. Magnetic resonance imaging using ultrasmall superparamagnetic particles of iron oxide can detect cellular inflammation in tissues, and we therefore explored their role in acute MI in humans. Methods and Results—Sixteen patients with acute ST-segment elevation MI were recruited to undergo 3 sequential magnetic resonance scans within 5 days of admission at baseline, 24 and 48 hours following no infusion (controls; n=6) or intravenous infusion of ultrasmall superparamagnetic particles of iron oxide (n=10; 4 mg/kg). T2*-weighted multigradient-echo sequences were acquired and R2* values were calculated for specific regions of interest. In the control group, R2* values remained constant in all tissues across all scans with excellent repeatability (bias of −0.208 s−1, coefficient of repeatability of 26.96 s−1; intraclass coefficient 0.989). Consistent with uptake by the reticuloendothelial system, R2* value increased in the liver (84±49.5 to 319±70.0 s−1; P<0.001) but was unchanged in skeletal muscle (54±8.4 to 67.0±9.5 s−1; P>0.05) 24 hours after administration of ultrasmall superparamagnetic particles of iron oxide. In the myocardial infarct, R2* value increased from 41.0±12.0 s−1 (baseline) to 155±45.0 s−1 (P<0.001) and 124±35.0 s−1 (P<0.05) at 24 and 48 hours, respectively. A similar but lower magnitude response was seen in the remote myocardium, where it increased from 39±3.2 s−1 (baseline) to 80±14.9 s−1 (P<0.001) and 67.0±15.7 s−1 (P<0.05) at 24 and 48 hours, respectively. Conclusions—Following acute MI, uptake of ultrasmall superparamagnetic particles of iron oxide occurs with the infarcted and remote myocardium. This technique holds major promise as a potential method for assessing cellular myocardial inflammation and left ventricular remodelling, which may have a range of applications in patients with MI and other inflammatory cardiac conditions. Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT01323296.


European Heart Journal | 2014

High-sensitivity troponin I concentrations are a marker of an advanced hypertrophic response and adverse outcomes in patients with aortic stenosis.

Calvin Chin; Anoop Shah; David A. McAllister; S. Joanna Cowell; Shirjel Alam; Jeremy P. Langrish; Fiona Strachan; Amanda Hunter; Anna Maria Choy; Chim C. Lang; Simon Walker; Nicholas A. Boon; David E. Newby; Nicholas L. Mills; Marc R. Dweck

Aims High-sensitivity cardiac troponin I (cTnI) assays hold promise in detecting the transition from hypertrophy to heart failure in aortic stenosis. We sought to investigate the mechanism for troponin release in patients with aortic stenosis and whether plasma cTnI concentrations are associated with long-term outcome. Methods and results Plasma cTnI concentrations were measured in two patient cohorts using a high-sensitivity assay. First, in the Mechanism Cohort, 122 patients with aortic stenosis (median age 71, 67% male, aortic valve area 1.0 ± 0.4 cm2) underwent cardiovascular magnetic resonance and echocardiography to assess left ventricular (LV) myocardial mass, function, and fibrosis. The indexed LV mass and measures of replacement fibrosis (late gadolinium enhancement) were associated with cTnI concentrations independent of age, sex, coronary artery disease, aortic stenosis severity, and diastolic function. In the separate Outcome Cohort, 131 patients originally recruited into the Scottish Aortic Stenosis and Lipid Lowering Trial, Impact of REgression (SALTIRE) study, had long-term follow-up for the occurrence of aortic valve replacement (AVR) and cardiovascular deaths. Over a median follow-up of 10.6 years (1178 patient-years), 24 patients died from a cardiovascular cause and 60 patients had an AVR. Plasma cTnI concentrations were associated with AVR or cardiovascular death HR 1.77 (95% CI, 1.22 to 2.55) independent of age, sex, systolic ejection fraction, and aortic stenosis severity. Conclusions In patients with aortic stenosis, plasma cTnI concentration is associated with advanced hypertrophy and replacement myocardial fibrosis as well as AVR or cardiovascular death.


Circulation-cardiovascular Imaging | 2012

In Vivo Mononuclear Cell Tracking Using Superparamagnetic Particles of Iron Oxide Feasibility and Safety in Humans

Jennifer Richards; Catherine A. Shaw; Ninian N. Lang; Michelle C. Williams; Scott Semple; Tom MacGillivray; Calum Gray; Julie H. Crawford; Shirjel Alam; Anne P.M. Atkinson; Elaine K. Forrest; Carol Bienek; Nicholas L. Mills; Anne Burdess; Kev Dhaliwal; A. John Simpson; William Wallace; Adam T. Hill; P. Huw Roddie; Graham McKillop; Thomas A. Connolly; Giora Z. Feuerstein; G. Robin Barclay; Marc Turner; David E. Newby

Background— Cell therapy is an emerging and exciting novel treatment option for cardiovascular disease that relies on the delivery of functional cells to their target site. Monitoring and tracking cells to ensure tissue delivery and engraftment is a critical step in establishing clinical and therapeutic efficacy. The study aims were (1) to develop a Good Manufacturing Practice–compliant method of labeling competent peripheral blood mononuclear cells with superparamagnetic particles of iron oxide (SPIO), and (2) to evaluate its potential for magnetic resonance cell tracking in humans. Methods and Results— Peripheral blood mononuclear cells 1–5×109 were labeled with SPIO. SPIO-labeled cells had similar in vitro viability, migratory capacity, and pattern of cytokine release to unlabeled cells. After intramuscular administration, up to 108 SPIO-labeled cells were readily identifiable in vivo for at least 7 days using magnetic resonance imaging scanning. Using a phased-dosing study, we demonstrated that systemic delivery of up to 109 SPIO-labeled cells in humans is safe, and cells accumulating in the reticuloendothelial system were detectable on clinical magnetic resonance imaging. In a healthy volunteer model, a focus of cutaneous inflammation was induced in the thigh by intradermal injection of tuberculin. Intravenously delivered SPIO-labeled cells tracked to the inflamed skin and were detectable on magnetic resonance imaging. Prussian blue staining of skin biopsies confirmed iron-laden cells in the inflamed skin. Conclusions— Human peripheral blood mononuclear cells can be labeled with SPIO without affecting their viability or function. SPIO labeling for magnetic resonance cell tracking is a safe and feasible technique that has major potential for a range of cardiovascular applications including monitoring of cell therapies and tracking of inflammatory cells. Clinical Trial Registration— URL: http://www.clinicaltrials.gov; Unique identifier: NCT00972946, NCT01169935.


Circulation-heart Failure | 2013

Sustained Cardiovascular Actions of APJ Agonism During Renin–Angiotensin System Activation and in Patients With Heart Failure

Gareth D. Barnes; Shirjel Alam; Gordon Carter; Christian M. Pedersen; Kristina M. Lee; Thomas J. Hubbard; Scott Veitch; Herim Jeong; Audrey C. White; Nicholas L. Cruden; Les Huson; Alan G. Japp; David E. Newby

Background—To assess cardiovascular actions of APJ agonism during prolonged (Pyr1)apelin-13 infusion and renin–angiotensin system activation. Methods and Results—Forty-eight volunteers and 12 patients with chronic stable heart failure attended a series of randomized placebo–controlled studies. Forearm blood flow, cardiac index, left ventricular dimensions, and mean arterial pressure were measured using bilateral venous occlusion plethysmography, bioimpedance cardiography, transthoracic echocardiography, and sphygmomanometry, respectively, during brief local (0.3–3.0 nmol/min) and systemic (30–300 nmol/min) or prolonged systemic (30 nmol/min) (Pyr1)apelin-13 infusions in the presence or absence of renin–angiotensin system activation with sodium depletion or angiotensin II coinfusion. During sodium depletion and angiotensin II coinfusion, (Pyr1)apelin-13–induced vasodilatation was preserved (P<0.02 for both). Systemic intravenous (Pyr1)apelin-13 infusion increased cardiac index, whereas reducing mean arterial pressure and peripheral vascular resistance index (P<0.001 for all) irrespective of sodium depletion or angiotensin II (0.5 ng/kg per minute) coinfusion (P>0.05 for all). Prolonged 6-hour (Pyr1)apelin-13 infusion caused a sustained increase in cardiac index with increased left ventricular ejection fraction in patients with chronic heart failure (ANOVA; P<0.001 for all). Conclusions—APJ agonism has sustained cardiovascular effects that are preserved in the presence of renin–angiotensin system activation or heart failure. APJ agonism may hold major promise to complement current optimal medical therapy in patients with chronic heart failure. Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00901719, NCT00901888, NCT01049646, NCT01179061.


Biochemical Pharmacology | 2012

Role of the endogenous elastase inhibitor, elafin, in cardiovascular injury: from epithelium to endothelium.

Shirjel Alam; David E. Newby; Peter Henriksen

Neutrophils and neutrophil-derived elastases play a major role in the regulation of vascular injury and inflammation, such as ischemia-reperfusion injury. Elafin is an endogenous inhibitor of neutrophil-derived elastases with numerous anti-inflammatory functions that include modulation of inflammatory cytokine release as well as innate and adaptive immunity. It is produced by epithelial tissues including the skin and respiratory system that have adapted to respond to the microbial and chemical insults that lead to inflammation. The production of peptides like elafin with multi-faceted anti-inflammatory activity is an important part of this adaptation. Although not directly expressed within the cardiovascular system itself, pre-clinical studies have suggested therapeutic benefit of elafin in cardiovascular disease. The aim of this review is to highlight the role of neutrophil-derived elastases in vascular inflammation and injury. We will discuss the beneficial effects of elafin inhibition of neutrophil elastase and its extended anti-inflammatory activity in pre-clinical models of inflammatory vascular injury.


Journal of the American Heart Association | 2015

Systemic Atherosclerotic Inflammation Following Acute Myocardial Infarction: Myocardial Infarction Begets Myocardial Infarction

Nikhil Joshi; Iqbal Toor; Anoop Shah; Kathryn F. Carruthers; Alex T. Vesey; Shirjel Alam; Andrew Sills; Teng Y. Hoo; Adam J. Melville; Sarah P. Langlands; William Jenkins; Neal G. Uren; Nicholas L. Mills; Alison Fletcher; Edwin J. R. van Beek; James H.F. Rudd; Keith A.A. Fox; Marc R. Dweck; David E. Newby

Background Preclinical data suggest that an acute inflammatory response following myocardial infarction (MI) accelerates systemic atherosclerosis. Using combined positron emission and computed tomography, we investigated whether this phenomenon occurs in humans. Methods and Results Overall, 40 patients with MI and 40 with stable angina underwent thoracic 18F-fluorodeoxyglucose combined positron emission and computed tomography scan. Radiotracer uptake was measured in aortic atheroma and nonvascular tissue (paraspinal muscle). In 1003 patients enrolled in the Global Registry of Acute Coronary Events, we assessed whether infarct size predicted early (≤30 days) and late (>30 days) recurrent coronary events. Compared with patients with stable angina, patients with MI had higher aortic 18F-fluorodeoxyglucose uptake (tissue-to-background ratio 2.15±0.30 versus 1.84±0.18, P<0.0001) and plasma C-reactive protein concentrations (6.50 [2.00 to 12.75] versus 2.00 [0.50 to 4.00] mg/dL, P=0.0005) despite having similar aortic (P=0.12) and less coronary (P=0.006) atherosclerotic burden and similar paraspinal muscular 18F-fluorodeoxyglucose uptake (P=0.52). Patients with ST-segment elevation MI had larger infarcts (peak plasma troponin 32 300 [10 200 to >50 000] versus 3800 [1000 to 9200] ng/L, P<0.0001) and greater aortic 18F-fluorodeoxyglucose uptake (2.24±0.32 versus 2.02±0.21, P=0.03) than those with non–ST-segment elevation MI. Peak plasma troponin concentrations correlated with aortic 18F-fluorodeoxyglucose uptake (r=0.43, P=0.01) and, on multivariate analysis, independently predicted early (tertile 3 versus tertile 1: relative risk 4.40 [95% CI 1.90 to 10.19], P=0.001), but not late, recurrent MI. Conclusions The presence and extent of MI is associated with increased aortic atherosclerotic inflammation and early recurrent MI. This finding supports the hypothesis that acute MI exacerbates systemic atherosclerotic inflammation and remote plaque destabilization: MI begets MI. Clinical Trial Registration URL: https://www.clinicaltrials.gov. Unique identifier: NCT01749254.


Heart | 2015

Perioperative elafin for ischaemia-reperfusion injury during coronary artery bypass graft surgery: a randomised-controlled trial

Shirjel Alam; Stephanie Lewis; V Zamvar; R Pessotto; Marc R. Dweck; Ashma Krishan; K Goodman; K Oatey; R Harkess; L Milne; Thomas S; N M Mills; C Moore; Scott Semple; Oliver Wiedow; Colin Stirrat; Saeed Mirsadraee; David E. Newby; Peter Henriksen

Background Elafin is a potent endogenous neutrophil elastase inhibitor that protects against myocardial inflammation and injury in preclinical models of ischaemic-reperfusion injury. We investigated whether elafin could inhibit myocardial ischaemia-reperfusion injury induced during coronary artery bypass graft (CABG) surgery. Methods and results In a randomised double-blind placebo-controlled parallel group clinical trial, 87 patients undergoing CABG surgery were randomised 1:1 to intravenous elafin 200 mg or saline placebo administered after induction of anaesthesia and prior to sternotomy. Myocardial injury was measured as cardiac troponin I release over 48 h (area under the curve (AUC)) and myocardial infarction identified with MRI. Postischaemic inflammation was measured by plasma markers including AUC high-sensitive C reactive protein (hs-CRP) and myeloperoxidase (MPO). Elafin infusion was safe and resulted in >3000-fold increase in plasma elafin concentrations and >50% inhibition of elastase activity in the first 24 h. This did not reduce myocardial injury over 48 h (ratio of geometric means (elafin/placebo) of AUC troponin I 0.74 (95% CI 0.47 to 1.15, p=0.18)) although post hoc analysis of the high-sensitive assay revealed lower troponin I concentrations at 6 h in elafin-treated patients (median 2.4 vs 4.1 μg/L, p=0.035). Elafin had no effect on myocardial infarction (elafin, 7/34 vs placebo, 5/35 patients) or on markers of inflammation: mean differences for AUC hs-CRP of 499 mg/L/48 h (95% CI −207 to 1205, p=0.16), and AUC MPO of 238 ng/mL/48 h (95% CI −235 to 711, p=0.320). Conclusions There was no strong evidence that neutrophil elastase inhibition with a single-dose elafin treatment reduced myocardial injury and inflammation following CABG-induced ischaemia-reperfusion injury. Trial registration number (EudraCT 2010-019527-58, ISRCTN82061264).


Heart | 2015

Perioperative elafin for ischaemia-reperfusion injury during coronary artery bypass graft surgery

Shirjel Alam; Steff Lewis; Zamvar; Renzo Pessotto; Marc R. Dweck; Ashma Krishan; Kirsteen Goodman; Katherine Oatey; R Harkess; L Milne; Stephen Thomas; Nicholas L. Mills; Charity G. Moore; Scott Semple; Oliver Wiedow; Colin Stirrat; Saeed Mirsadraee; David E. Newby; Peter Henriksen

Background Elafin is a potent endogenous neutrophil elastase inhibitor that protects against myocardial inflammation and injury in preclinical models of ischaemic-reperfusion injury. We investigated whether elafin could inhibit myocardial ischaemia-reperfusion injury induced during coronary artery bypass graft (CABG) surgery. Methods and results In a randomised double-blind placebo-controlled parallel group clinical trial, 87 patients undergoing CABG surgery were randomised 1:1 to intravenous elafin 200 mg or saline placebo administered after induction of anaesthesia and prior to sternotomy. Myocardial injury was measured as cardiac troponin I release over 48 h (area under the curve (AUC)) and myocardial infarction identified with MRI. Postischaemic inflammation was measured by plasma markers including AUC high-sensitive C reactive protein (hs-CRP) and myeloperoxidase (MPO). Elafin infusion was safe and resulted in >3000-fold increase in plasma elafin concentrations and >50% inhibition of elastase activity in the first 24 h. This did not reduce myocardial injury over 48 h (ratio of geometric means (elafin/placebo) of AUC troponin I 0.74 (95% CI 0.47 to 1.15, p=0.18)) although post hoc analysis of the high-sensitive assay revealed lower troponin I concentrations at 6 h in elafin-treated patients (median 2.4 vs 4.1 μg/L, p=0.035). Elafin had no effect on myocardial infarction (elafin, 7/34 vs placebo, 5/35 patients) or on markers of inflammation: mean differences for AUC hs-CRP of 499 mg/L/48 h (95% CI −207 to 1205, p=0.16), and AUC MPO of 238 ng/mL/48 h (95% CI −235 to 711, p=0.320). Conclusions There was no strong evidence that neutrophil elastase inhibition with a single-dose elafin treatment reduced myocardial injury and inflammation following CABG-induced ischaemia-reperfusion injury. Trial registration number (EudraCT 2010-019527-58, ISRCTN82061264).


Journal of Cardiovascular Magnetic Resonance | 2015

Vascular and plaque imaging with ultrasmall superparamagnetic particles of iron oxide

Shirjel Alam; Colin Stirrat; Jennifer Richards; Saeed Mirsadraee; Scott Semple; George Tse; Peter Henriksen; David E. Newby

Cardiovascular Magnetic Resonance (CMR) has become a primary tool for non-invasive assessment of cardiovascular anatomy, pathology and function. Existing contrast agents have been utilised for the identification of infarction, fibrosis, perfusion deficits and for angiography. Novel ultrasmall superparamagnetic particles of iron oxide (USPIO) contrast agents that are taken up by inflammatory cells can detect cellular inflammation non-invasively using CMR, potentially aiding the diagnosis of inflammatory medical conditions, guiding their treatment and giving insight into their pathophysiology. In this review we describe the utilization of USPIO as a novel contrast agent in vascular disease.

Collaboration


Dive into the Shirjel Alam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott Semple

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anoop Shah

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Calum Gray

University of Edinburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge