Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shirley ShiDu Yan is active.

Publication


Featured researches published by Shirley ShiDu Yan.


Hypertension | 2012

Hypertension Induces Brain β-Amyloid Accumulation, Cognitive Impairment, and Memory Deterioration Through Activation of Receptor for Advanced Glycation End Products in Brain Vasculature

Daniela Carnevale; Giada Mascio; Ivana D'Andrea; Valentina Fardella; Robert D. Bell; Igor Branchi; Fabio Pallante; Berislav V. Zlokovic; Shirley ShiDu Yan; Giuseppe Lembo

Although epidemiological data associate hypertension with a strong predisposition to develop Alzheimer disease, no mechanistic explanation exists so far. We developed a model of hypertension, obtained by transverse aortic constriction, leading to alterations typical of Alzheimer disease, such as amyloid plaques, neuroinflammation, blood-brain barrier dysfunction, and cognitive impairment, shown here for the first time. The aim of this work was to investigate the mechanisms involved in Alzheimer disease of hypertensive mice. We focused on receptor for advanced glycation end products (RAGE) that critically regulates A&bgr; transport at the blood-brain barrier and could be influenced by vascular factors. The hypertensive challenge had an early and sustained effect on RAGE upregulation in brain vessels of the cortex and hippocampus. Interestingly, RAGE inhibition protected from hypertension-induced Alzheimer pathology, as showed by rescue from cognitive impairment and parenchymal A&bgr; deposition. The increased RAGE expression in transverse aortic coarctation mice was induced by increased circulating advanced glycation end products and sustained by their later deposition in brain vessels. Interestingly, a daily treatment with an advanced glycation end product inhibitor or antioxidant prevented the development of Alzheimer traits. So far, Alzheimer pathology in experimental animal models has been recognized using only transgenic mice overexpressing amyloid precursor. This is the first study demonstrating that a chronic vascular insult can activate brain vascular RAGE, favoring parenchymal A&bgr; deposition and the onset of cognitive deterioration. Overall we demonstrate that RAGE activation in brain vessels is a crucial pathogenetic event in hypertension-induced Alzheimer disease, suggesting that inhibiting this target can limit the onset of vascular-related Alzheimer disease.


Biochimica et Biophysica Acta | 2014

Mitochondrial permeability transition pore is a potential drug target for neurodegeneration

Valasani Koteswara Rao; Emily A. Carlson; Shirley ShiDu Yan

Mitochondrial permeability transition pore (mPTP) plays a central role in alterations of mitochondrial structure and function leading to neuronal injury relevant to aging and neurodegenerative diseases including Alzheimers disease (AD). mPTP putatively consists of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocator (ANT) and cyclophilin D (CypD). Reactive oxygen species (ROS) increase intra-cellular calcium and enhance the formation of mPTP that leads to neuronal cell death in AD. CypD-dependent mPTP can play a crucial role in ischemia/reperfusion injury. The interaction of amyloid beta peptide (Aβ) with CypD potentiates mitochondrial and neuronal perturbation. This interaction triggers the formation of mPTP, resulting in decreased mitochondrial membrane potential, impaired mitochondrial respiration function, increased oxidative stress, release of cytochrome c, and impaired axonal mitochondrial transport. Thus, the CypD-dependent mPTP is directly linked to the cellular and synaptic perturbations observed in the pathogenesis of AD. Designing small molecules to block this interaction would lessen the effects of Aβ neurotoxicity. This review summarizes the recent progress on mPTP and its potential therapeutic target for neurodegenerative diseases including AD.


Biochimica et Biophysica Acta | 2014

Inhibition of ERK-DLP1 signaling and mitochondrial division alleviates mitochondrial dysfunction in Alzheimer's disease cybrid cell

Xueqi Gan; Shengbin Huang; Long Wu; Yongfu Wang; Gang Hu; Guangyue Li; Hongju Zhang; Haiyang Yu; Russell H. Swerdlow; John Xi Chen; Shirley ShiDu Yan

Mitochondrial dysfunction is an early pathological feature of Alzheimers disease (AD). The underlying mechanisms and strategies to repair it remain unclear. Here, we demonstrate for the first time the direct consequences and potential mechanisms of mitochondrial functional defects associated with abnormal mitochondrial dynamics in AD. Using cytoplasmic hybrid (cybrid) neurons with incorporated platelet mitochondria from AD and age-matched non-AD human subjects into mitochondrial DNA (mtDNA)-depleted neuronal cells, we observed that AD cybrid cells had significant changes in morphology and function; such changes associate with altered expression and distribution of dynamin-like protein (DLP1) and mitofusin 2 (Mfn2). Treatment with antioxidant protects against AD mitochondria-induced extracellular signal-regulated kinase (ERK) activation and mitochondrial fission-fusion imbalances. Notably, inhibition of ERK activation not only attenuates aberrant mitochondrial morphology and function but also restores the mitochondrial fission and fusion balance. These effects suggest a role of oxidative stress-mediated ERK signal transduction in modulation of mitochondrial fission and fusion events. Further, blockade of the mitochondrial fission protein DLP1 by a genetic manipulation with a dominant negative DLP1 (DLP1(K38A)), its expression with siRNA-DLP1, or inhibition of mitochondrial division with mdivi-1 attenuates mitochondrial functional defects observed in AD cybrid cells. Our results provide new insights into mitochondrial dysfunction resulting from changes in the ERK-fission/fusion (DLP1) machinery and signaling pathway. The protective effect of mdivi-1 and inhibition of ERK signaling on maintenance of normal mitochondrial structure and function holds promise as a potential novel therapeutic strategy for AD.


PLOS ONE | 2013

Cyclophilin D Deficiency Rescues Axonal Mitochondrial Transport in Alzheimer’s Neurons

Lan Guo; Heng Du; Shiqiang Yan; Xiaoping Wu; Guy M. McKhann; John Xi Chen; Shirley ShiDu Yan

Normal axonal mitochondrial transport and function is essential for the maintenance of synaptic function. Abnormal mitochondrial motility and mitochondrial dysfunction within axons are critical for amyloid β (Aβ)-induced synaptic stress and the loss of synapses relevant to the pathogenesis of Alzheimer’s disease (AD). However, the mechanisms controlling axonal mitochondrial function and transport alterations in AD remain elusive. Here, we report an unexplored role of cyclophilin D (CypD)-dependent mitochondrial permeability transition pore (mPTP) in Aβ-impaired axonal mitochondrial trafficking. Depletion of CypD significantly protects axonal mitochondrial motility and dynamics from Aβ toxicity as shown by increased axonal mitochondrial density and distribution and improved bidirectional transport of axonal mitochondria. Notably, blockade of mPTP by genetic deletion of CypD suppresses Aβ-mediated activation of the p38 mitogen-activated protein kinase signaling pathway, reverses axonal mitochondrial abnormalities, improves synaptic function, and attenuates loss of synapse, suggesting a role of CypD-dependent signaling in Aβ-induced alterations in axonal mitochondrial trafficking. The potential mechanisms of the protective effects of lacking CypD on Aβ-induced abnormal mitochondrial transport in axon are increased axonal calcium buffer capability, diminished reactive oxygen species (ROS), and suppressing downstream signal transduction P38 activation. These findings provide new insights into CypD-dependent mitochondrial mPTP and signaling on mitochondrial trafficking in axons and synaptic degeneration in an environment enriched for Aβ.


Antioxidants & Redox Signaling | 2012

Synaptic mitochondrial pathology in Alzheimer's disease.

Heng Du; Lan Guo; Shirley ShiDu Yan

SIGNIFICANCE Synaptic degeneration, an early pathological feature in Alzheimers disease (AD), is closely correlated to impaired cognitive function and memory loss. Recent studies suggest that involvement of amyloid-beta peptide (Aβ) in synaptic mitochondrial alteration underlies these synaptic lesions. Thus, to understand the Aβ-associated synaptic mitochondrial perturbations would fortify our understanding of synaptic stress in the pathogenesis of AD. RECENT ADVANCES Increasing evidence suggests that synaptic mitochondrial dysfunction is strongly associated with synaptic failure in many neurodegenerative diseases including AD. Based on recent findings in human AD subjects, AD animal models, and AD cellular models, synaptic mitochondria undergo multiple malfunctions including Aβ accumulation, increased oxidative stress, decreased respiration, and compromised calcium handling capacity, all of which occur earlier than changes seen in nonsynaptic mitochondria before predominant AD pathology. Of note, the impact of Aβ on mitochondrial motility and dynamics exacerbates synaptic mitochondrial alterations. CRITICAL ISSUES Synaptic mitochondria demonstrate early deficits in AD; in combination with the role that synaptic mitochondria play in sustaining synaptic functions, deficits in synaptic mitochondria may be a key factor involved in an early synaptic pathology in AD. FUTURE DIRECTIONS The importance of synaptic mitochondria in supporting synapses and the high vulnerability of synaptic mitochondria to Aβ make them a promising target of new therapeutic strategy for AD.


Biochimica et Biophysica Acta | 2014

Cyclophilin D deficiency rescues Aβ-impaired PKA/CREB signaling and alleviates synaptic degeneration

Heng Du; Lan Guo; Xiaoping Wu; Alexander A. Sosunov; Guy M. McKhann; John Xi Chen; Shirley ShiDu Yan

The coexistence of neuronal mitochondrial pathology and synaptic dysfunction is an early pathological feature of Alzheimers disease (AD). Cyclophilin D (CypD), an integral part of mitochondrial permeability transition pore (mPTP), is involved in amyloid beta (Aβ)-instigated mitochondrial dysfunction. Blockade of CypD prevents Aβ-induced mitochondrial malfunction and the consequent cognitive impairments. Here, we showed the elimination of reactive oxygen species (ROS) by antioxidants probucol or superoxide dismutase (SOD)/catalase blocks Aβ-mediated inactivation of protein kinase A (PKA)/cAMP regulatory-element-binding (CREB) signal transduction pathway and loss of synapse, suggesting the detrimental effects of oxidative stress on neuronal PKA/CREB activity. Notably, neurons lacking CypD significantly attenuate Aβ-induced ROS. Consequently, CypD-deficient neurons are resistant to Aβ-disrupted PKA/CREB signaling by increased PKA activity, phosphorylation of PKA catalytic subunit (PKA C), and CREB. In parallel, lack of CypD protects neurons from Aβ-induced loss of synapses and synaptic dysfunction. Furthermore, compared to the mAPP mice, CypD-deficient mAPP mice reveal less inactivation of PKA-CREB activity and increased synaptic density, attenuate abnormalities in dendritic spine maturation, and improve spontaneous synaptic activity. These findings provide new insights into a mechanism in the crosstalk between the CypD-dependent mitochondrial oxidative stress and signaling cascade, leading to synaptic injury, functioning through the PKA/CREB signal transduction pathway.


Human Molecular Genetics | 2013

Bioenergetic flux, mitochondrial mass and mitochondrial morphology dynamics in AD and MCI cybrid cell lines

Diana F. Silva; J. Eva Selfridge; Jianghua Lu; Lezi E; Nairita Roy; Lewis Hutfles; Jeffrey M. Burns; Elias K. Michaelis; Shirley ShiDu Yan; Sandra M. Cardoso; Russell H. Swerdlow

Bioenergetic dysfunction occurs in Alzheimers disease (AD) and mild cognitive impairment (MCI), a clinical syndrome that frequently precedes symptomatic AD. In this study, we modeled AD and MCI bioenergetic dysfunction by transferring mitochondria from MCI, AD and control subject platelets to mtDNA-depleted SH-SY5Y cells. Bioenergetic fluxes and bioenergetics-related infrastructures were characterized in the resulting cytoplasmic hybrid (cybrid) cell lines. Relative to control cybrids, AD and MCI cybrids showed changes in oxygen consumption, respiratory coupling and glucose utilization. AD and MCI cybrids had higher ADP/ATP and lower NAD+/NADH ratios. AD and MCI cybrids exhibited differences in proteins that monitor, respond to or regulate cell bioenergetic fluxes including HIF1α, PGC1α, SIRT1, AMPK, p38 MAPK and mTOR. Several endpoints suggested mitochondrial mass increased in the AD cybrid group and probably to a lesser extent in the MCI cybrid group, and that the mitochondrial fission-fusion balance shifted towards increased fission in the AD and MCI cybrids. As many of the changes we observed in AD and MCI cybrid models are also seen in AD subject brains, we conclude reduced bioenergetic function is present during very early AD, is not brain-limited and induces protean retrograde responses that likely have both adaptive and mal-adaptive consequences.


Frontiers in Bioscience | 2012

RAGE is a key cellular target for Abeta-induced perturbation in Alzheimer's disease.

Shirley ShiDu Yan; Doris Chen; Shijun Yan; Lan Guo; Du H; John Xi Chen

RAGE, a receptor for advanced glycation endproducts, is an immunoglobulin-like cell surface receptor that is often described as a pattern recognition receptor due to the structural heterogeneity of its ligand. RAGE is an important cellular cofactor for amyloid beta-peptide (Abeta)-mediated cellular perturbation relevant to the pathogenesis of Alzheimers disease (AD). The interaction of RAGE with Abeta in neurons, microglia, and vascular cells accelerates and amplifies deleterious effects on neuronal and synaptic function. RAGE-dependent signaling contributes to Abeta-mediated amyloid pathology and cognitive dysfunction observed in the AD mouse model. Blockade of RAGE significantly attenuates neuronal and synaptic injury. In this review, we summarize the role of RAGE in the pathogenesis of AD, specifically in Abeta-induced cellular perturbation.


Diabetes | 2015

Drp1-Mediated Mitochondrial Abnormalities Link to Synaptic Injury in Diabetes Model

Shengbin Huang; Yongfu Wang; Xueqi Gan; Du Fang; Changjia Zhong; Long Wu; Gang Hu; Alexander A. Sosunov; Guy M. McKhann; Haiyang Yu; Shirley ShiDu Yan

Diabetes has adverse effects on the brain, especially the hippocampus, which is particularly susceptible to synaptic injury and cognitive dysfunction. The underlying mechanisms and strategies to rescue such injury and dysfunction are not well understood. Using a mouse model of type 2 diabetes (db/db mice) and a human neuronal cell line treated with high concentration of glucose, we demonstrate aberrant mitochondrial morphology, reduced ATP production, and impaired activity of complex I. These mitochondrial abnormalities are induced by imbalanced mitochondrial fusion and fission via a glycogen synthase kinase 3β (GSK3β)/dynamin-related protein-1 (Drp1)-dependent mechanism. Modulation of the Drp1 pathway or inhibition of GSK3β activity restores hippocampal long-term potentiation that is impaired in db/db mice. Our results point to a novel role for mitochondria in diabetes-induced synaptic impairment. Exploration of the mechanisms behind diabetes-induced synaptic deficit may provide a novel treatment for mitochondrial and synaptic injury in patients with diabetes.


Neuropharmacology | 2015

Multi-faced neuroprotective effects of geniposide depending on the RAGE-mediated signaling in an Alzheimer mouse model

Cui Lv; Lei Wang; Xiaoli Liu; Shijun Yan; Shirley ShiDu Yan; Yongyan Wang; Wensheng Zhang

The receptor for advanced glycation end products (RAGE)-mediated signaling pathway is related to Aβ-induced pathogenic responses. Geniposide, a pharmacologically active component purified from gardenia fruit, could attenuate the oligomeric Aβ(1-42)-induced inflammatory response by blocking the ligation of Aβ to RAGE and suppressing the RAGE-mediated signaling in vitro. Here, we investigated whether geniposide can exert protective effects on the neuroinflammation and memory deficits in an Alzheimers disease (AD) mouse model. The results indicate that geniposide treatment significantly suppresses RAGE-dependent signaling (activation of ERK and IκB/NF-κB), the production of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and cerebral Aβ accumulation in vivo. Furthermore, we demonstrate that geniposide augments synaptic plasticity by attenuating the Aβ-induced reduction of long-term potentiation and increasing the miniature excitatory postsynaptic current (mEPSC) amplitude and frequency in hippocampal neurons. In addition, the intragastric administration of geniposide improves learning and memory in APP/PS1 mice. Taken together, these studies indicate that geniposide has profound multifaceted neuroprotective effects in an AD mouse model. Geniposide demonstrates its neuroprotection by inhibiting inflammation, ameliorating amyloid pathology and improving cognition. Thus, geniposide may be a potential therapeutic agent for halting and preventing AD progression.

Collaboration


Dive into the Shirley ShiDu Yan's collaboration.

Top Co-Authors

Avatar

Fang Du

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Long Wu

University of Kansas

View shared research outputs
Top Co-Authors

Avatar

Gang Hu

University of Kansas

View shared research outputs
Top Co-Authors

Avatar

John Xi Chen

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Yu

University of Kansas

View shared research outputs
Researchain Logo
Decentralizing Knowledge