Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shiro Kohshima is active.

Publication


Featured researches published by Shiro Kohshima.


Nature | 1997

Unique morphology of the human eye

Hiromi Kobayashi; Shiro Kohshima

Human eyes have a widely exposed white sclera surrounding the darker coloured iris, making it easy to discern the direction in which they are looking. We compared the external morphology of primate eyes in nearly half of all primate species, and show that this feature is uniquely human. Humans have the largest ratio of exposed sclera in the eye outline, which itself is elongated horizontally. We suggest that these are adaptations to extend the visual field by allowing greater eye movement, especially in the horizontal direction, and to enhance the ease of detecting the gaze direction of another individual.


Arctic, Antarctic, and Alpine Research | 2001

Structure, Formation, and Darkening Process of Albedo-reducing Material (Cryoconite) on a Himalayan Glacier: A Granular Algal Mat Growing on the Glacier

Nozomu Takeuchi; Shiro Kohshima; Katsumoto Seko

Dark-colored material (cryoconite) covering Himalayan glaciers has been reported to greatly accelerate glacier-melting by reducing surface albedo. Structure, formation, and the darkening process of the cryoconite on a Himalayan glacier were analyzed. The cryoconite was revealed to be a stromatolite-like algal mat, a product of microbial activity on the glacier. The granular algal mat contains filamentous blue-green algae (cyanobacteria) and bacteria, and grows on the ice by trapping mineral and organic particles. This structure seems to enable high algal production in nutrient poor glacial meltwater by gathering and keeping nutrient rich particles inside. The dark coloration of the mats promotes melt-hole formation on the ice (cryoconite holes), providing a semistagnant aquatic habitat for various algae and animals in the glacier. Optical and chemical analyses of the cryoconite strongly suggests that their high light- absorbency (dark coloration) is mainly due to dark-colored humic substances, residues from bacterial decomposition of the algal products and other organic matter. Our results strongly suggest that biological activity on the glacier substantially affects the albedo of the glacier surface. The structure of the algal mat seems to be important in the glacier ecosystem and biological process affecting glacier albedo.


Applied and Environmental Microbiology | 2005

Seasonal Change in Bacterial Flora and Biomass in Mountain Snow from the Tateyama Mountains, Japan, Analyzed by 16S rRNA Gene Sequencing and Real-Time PCR

Takahiro Segawa; Koji Miyamoto; Kazunari Ushida; Kiyokazu Agata; Norihiro Okada; Shiro Kohshima

ABSTRACT The bacterial flora and biomass in mountain snow from the Tateyama Mountains, Toyama Prefecture, Japan, one of the heaviest snowfall regions in the world, were analyzed by amplified ribosomal DNA restriction analysis followed by 16S rRNA gene sequencing and DNA quantification by real-time PCR. Samples of surface snow collected in various months during the melting season contained a psychrophilic bacterium, Cryobacterium psychrophilum, and two psychrotrophic bacteria, Variovorax paradoxus and Janthinobacterium lividum. Bacterial colonies that developed in an in situ meltwater medium at 4°C were revealed to be V. paradoxus. The biomasses of C. psychrophilum, J. lividum, and V. paradoxus, as estimated by real-time PCR, showed large increases during the melting season from March to October (2.0 × 105-fold, 1.5 × 105-fold, and 1.0 × 104-fold increases, respectively), suggesting their rapid growth in the surface snow. The biomasses of C. psychrophilum and J. lividum increased significantly from March to April, reached a maximum in August, and dropped at the end of the melting season. In contrast, the biomass of V. paradoxus did not increase as rapidly during the early melting season but continued to increase from June until October. The differences in development observed among these bacterial species suggest that their growth was promoted by different nutrients and/or environmental conditions in the snow. Since these three types of bacteria have also been reported to be present in a glacier in Antarctica and a Greenland ice core, they seem to be specialized members of the snow biota that are distributed in snow and ice environments in various parts of the world.


Environmental Microbiology Reports | 2013

Distribution of antibiotic resistance genes in glacier environments

Takahiro Segawa; Nozomu Takeuchi; Andrés Rivera; Akinori Yamada; Yoshitaka Yoshimura; Gonzalo Barcaza; Kunio Shinbori; Hideaki Motoyama; Shiro Kohshima; Kazunari Ushida

Antibiotic resistance genes are biologically transmitted from microorganism to microorganism in particular micro-environments where dense microbial communities are often exposed to an intensive use of antibiotics, such as intestinal microflora, and the soil microflora of agricultural fields. However, recent studies have detected antibiotic-resistant bacteria and/or antibiotic resistance genes in the natural environment geographically isolated from such areas. Here we sought to examine the prevalence of antibiotic resistance genes in 54 snow and ice samples collected from the Arctic, Antarctic, Central Asia, North and South America and Africa, to evaluate the level of these genes in environments supposedly not affected by anthropogenic factors. We observed a widespread distribution of antibiotic resistance genes in samples from various glaciers in Central Asia, North and South America, Greenland and Africa. In contrast, Antarctic glaciers were virtually free from these genes. Antibiotic resistance genes, of both clinical (i.e. aac(3), blaIMP) and agricultural (i.e. strA and tetW) origin, were detected. Our results show regional geographical distribution of antibiotic resistance genes, with the most plausible modes of transmission through airborne bacteria and migrating birds.


Journal of Glaciology | 2000

Himalayan ice-core dating with snow algae

Yoshitaka Yoshimura; Shiro Kohshima; Nozomu Takeuchi; Katsumoto Seko; Koji Fujita

Snow algae in shallow ice cores (7 m long) from Yala Glacier in the Lang-tang region of Nepal were examined for potential use in ice-core dating. Ice-core samples taken at 5350 m a.s.l. in 1994 contained more than seven species of snow algae. In a vertical profile of the algal biomass, 11 distinct algal layers were observed. Seasonal observation in 1996 at the coring site indicated most algal growth occurred from late spring to late summer. Pit observation in 1991, 1992 and 1994 indicated that algal layer formation takes place annually δ 18 O, chemical ions (Na + , Cl - , SO 4 2 and NO 3 - ) and microparticles failed to show any clear seasonal variation, particularly at depths exceeding 2 m, possibly due to heavy meltwater percolation. Snow algae in ice cores would thus appear to be accurate boundary markers of annual layers and should prove useful for ice-core dating in Himalayan-type glaciers.


Annals of Glaciology | 2002

High net accumulation rates at Campo de Hielo Patago´nico Sur, South America, revealed by analysis of a 45.97 m long ice core

Takayuki Shiraiwa; Shiro Kohshima; Ryu Uemura; Naohiro Yoshida; Sumito Matoba; Jun Uetake; María Angélica Godoi

Abstract A 45.97 m long ice core was recovered in the accumulation area of Glaciar Tyndall (50˚59’05’’ S, 73˚31’12’’W; 1756ma.s.l.), Campo de Hielo Patagόnico Sur (southern Patagonia icefield), during December 1999. the firn core was subjected to visual stratigraphic observation and bulk density measurements in the field, and later to analyses of water isotopes (δ18O, δD), major dissolved ions and snow algal biomass. the drillhole remained dry down to about 43 m depth, where a water-soaked layer appeared. Seasonal cycles were found for δ18O, δD and the D-excess, although the amplitudes of the cycles decreased with depth. Major dissolved ions (Na+, K+, Mg2+, Ca2+, Cl–, SO4 2–) and algal biomass exhibit rapid decreases in the upper 3 m, probably due to meltwater elution. Annual increments defined by the δ18O and D-excess peaks suggest that the minimum net accumulation rates at this location were 17.8ma–1 in 1997/98–1998/99 and 411.0 ma–1 in 1998/99–1999/2000. These are much higher values than those previously obtained from past ice-core studies in Patagonia, but are of the same order of magnitude as those predicted from various observations in ablation areas of Patagonian glaciers.


Geophysical Research Letters | 2006

Spatial distribution and abundance of red snow algae on the Harding Icefield, Alaska derived from a satellite image

Nozomu Takeuchi; Roman J. Dial; Shiro Kohshima; Takahiro Segawa; Jun Uetake

[1] Red snow caused by algal bloom is common on glaciers and snowfields worldwide. Description of spatial distributions of snow algal blooms is important for understanding snow algae’s unique life in an extremely cold environment and for determining the effect of algae through the reduction of surface albedo. Here we present the spatial distribution of red snow algae on the Harding Icefield, Alaska retrieved from a satellite image. Field observations on the icefield conducted in August 2001 revealed visible red snow, particularly near the snowline. Field measurements of spectral reflectance on the surface revealed the specific spectral absorption of algal pigments. We found a significant correlation between snow algal biomass and a reflectance ratio of SPOT (Satellite Probatoire d’ Observation de la Terre) satellite band of wavelength 610–680 nm to band 500–590 nm. Using this relationship between the reflectance ratio and algal biomass, we estimated the distribution and abundance of red snow across the icefield using a SPOT satellite image. The spatial distribution of red snow on the icefield obtained by mapping the reflectance ratio matched field observations across the icefield with more red algal blooms on the continental than the maritime side of the icefield. Area averaged mean carbon content estimated from the red algal biomass for the icefield on the image was 1.2 kg km 2 .


Annals of Botany | 2008

Anti-herbivore Structures of Paulownia tomentosa: Morphology, Distribution, Chemical Constituents and Changes During Shoot and Leaf Development

Sawa Kobayashi; Teigo Asai; Yoshinori Fujimoto; Shiro Kohshima

BACKGROUND AND AIMS Recent studies have shown that small structures on plant surfaces serve ecological functions such as resistance against herbivores. The morphology, distribution, chemical composition and changes during shoot and leaf development of such small structures were examined on Paulownia tomentosa. METHODS The morphology and distribution of the structures were studied under light microscopy, and their chemical composition was analysed using thin-layer chromatography and high-performance liquid chromatography. To further investigate the function of these structures, several simple field experiments and observations were also conducted. KEY RESULTS Three types of small structures on P. tomentosa were investigated: bowl-shaped organs, glandular hairs and dendritic trichomes. The bowl-shaped organs were densely aggregated on the leaves near flower buds and were determined to be extrafloral nectarines (EFNs) that secrete sugar and attract ants. Nectar production of these organs was increased by artificial damage to the leaves, suggesting an anti-herbivore function through symbiosis with ants. Glandular hairs were found on the surfaces of young and/or reproductive organs. Glandular hairs on leaves, stems and flowers secreted mucilage containing glycerides and trapped small insects. Secretions from glandular hairs on flowers and immature fruits contained flavonoids, which may provide protection against some herbivores. Yellow dendritic trichomes on the adaxial side of leaves also contained flavonoids identical to those secreted by the glandular hairs on fruits and flowers. Three special types of leaves, which differed from the standard leaves in shape, size and identity of small structures, developed near young shoot tips or young flower buds. The density of small structures on these leaf types was higher than on standard leaves, suggesting that these leaf types may be specialized to protect young leaves or reproductive organs. Changes in the small structures during leaf development suggested that leaves of P. tomentosa are primarily protected by glandular hairs and dendritic trichomes at young stages and by the EFNs at mature stages. CONCLUSIONS The results indicate that P. tomentosa protects young and/or reproductive organs from herbivores through the distribution and allocation of small structures, the nature of which depends on the developmental stage of leaves and shoots.


American Journal of Primatology | 2010

Feeding ecology of Bornean orangutans (Pongo pygmaeus morio) in Danum Valley, Sabah, Malaysia: a 3-year record including two mast fruitings.

Tomoko Kanamori; Noko Kuze; Henry Bernard; Titol Peter Malim; Shiro Kohshima

We observed the diet and activity of Bornean orangutans (Pongo pygmaeus morio) in the primary lowland dipterocarp forests of Danum Valley, Sabah, Malaysia, during 2005–2007, including two mast fruitings. We collected 1,785 hr of focal data on 26 orangutans. We identified 1,466 samples of their food plants and conducted a fallen fruit census to monitor fruit availability in the study area. Their activity budget was 47.2% feeding, 34.4% resting, and 16.9% traveling. Fruits accounted for the largest part (60.9%) of feeding time, especially during mast fruiting periods (64.0–100%), although the percentages of leaves (22.2%) and bark (12.3%) were higher than those reported for P. abelii and P. pygmaeus wurmbii. Although 119 genera and 160 plant species were consumed by focal animals, only 9 genera accounted for more than 3% of feeding time (total: 67.8% for 9 genera). In particular, the focal orangutans fed intensively on Ficus and Spatholobus during most of the study period, especially in periods of fruit shortage. The percentage of fruit feeding changed markedly from 11.7 to 100% across different months of the year, and was positively correlated with the amount of fallen fruit. When fruit feeding and availability decreased, orangutans fed primarily on leaves of Spatholobus and Ficus, and the bark of Spatholobus and dipterocarp. The percentage of time devoted to feeding during mast fruitings, when the orangutans foraged almost exclusively on fruits, was lower than during seasons when the orangutan diet included leaves and bark as well as fruits. Resting increased as feeding decreased in the late stage of each fruiting season, suggesting that the orangutans adopted an energy‐minimizing strategy to survive the periods of fruit shortage by using energy stored during the fruit season. Am. J. Primatol. 72:820–840, 2010.


Arctic, Antarctic, and Alpine Research | 2004

A Snow Algal Community on Tyndall Glacier in the Southern Patagonia Icefield, Chile

Nozomu Takeuchi; Shiro Kohshima

Abstract We quantitatively investigated a snow algal community on Tyndall Glacier of the Southern Patagonia Icefield, Chile, at an elevation from 300 to 1500 m a.s.l. We observed 7 species of snow and ice algae (Chlorophyta and cyanobacteria) on the glacier. These species were Mesotaenium (M.) berggrenii, Cylindrocystis (Cyl.) brébissonii, Ancylonema sp., Closterium sp., Chloromonas sp., Oscillatoriaceae cyanobacterium, and an unknown alga. The spatial distribution of these algae differed among the species. M. berggrenii, Cyl. brébissonii, Ancylonema sp., and Closterium sp. appeared mainly in the lower-elevation area (370–770 m a.s.l.), the unknown alga in the higher-elevation area (900–1500 m a.s.l.), and Chloromonas sp. and Oscillatoriaceae cyanobacterium in the middle part of the glacier. The mean cell concentration and total cell volume biomass ranged from 0 to 9.2 × 104 (mean: 1.8 × 104) cells mL−1, from 0 to 327 (mean: 63) μL m−2, respectively. The cell volume biomass generally decreased with altitude. The community structure showed that M. berggrenii was dominant in the ice area (65–100% of total cell volume) and lower snow area (50–70%) and that the unknown alga was dominant in the higher snow area (100%). The Simpsons species diversity index was significantly different among the study sites but was generally low (less than 1.9) at all sites. The cell volume biomass and diversity index are relatively smaller on the Patagonian glacier than those in algal communities on Alaskan and Himalayan glaciers. Lower nutrient levels in precipitation are likely to cause the smaller algal biomass on the glacier.

Collaboration


Dive into the Shiro Kohshima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Uetake

National Institute of Polar Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noko Kuze

Japan Society for the Promotion of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Kanda

National Institute of Polar Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry Bernard

Universiti Malaysia Sabah

View shared research outputs
Researchain Logo
Decentralizing Knowledge