Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shiro Soga is active.

Publication


Featured researches published by Shiro Soga.


Cell Stress & Chaperones | 1998

Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin.

Theodor W. Schulte; Shiro Akinaga; Shiro Soga; William P. Sullivan; Bridget Stensgard; David O. Toft; Leonard M. Neckers

The molecular chaperone Hsp90 plays an essential role in the folding and function of important cellular proteins including steroid hormone receptors, protein kinases and proteins controlling the cell cycle and apoptosis. A 15 A deep pocket region in the N-terminal domain of Hsp90 serves as an ATP/ADP-binding site and has also been shown to bind geldanamycin, the only specific inhibitor of Hsp90 function described to date. We now show that radicicol, a macrocyclic antifungal structurally unrelated to geldanamycin, also specifically binds to Hsp90. Moreover, radicicol competes with geldanamycin for binding to the N-terminal domain of the chaperone, expressed either by in vitro translation or as a purified protein, suggesting that radicicol shares the geldanamycin binding site. Radicicol, as does geldanamycin, also inhibits the binding of the accessory protein p23 to Hsp90, and interferes with assembly of the mature progesterone receptor complex. Radicicol does not deplete cells of Hsp90, but rather increases synthesis as well as the steady-state level of this protein, similar to a stress response. Finally, radicicol depletes SKBR3 cells of p185erbB2, Raf-1 and mutant p53, similar to geldanamycin. Radicicol thus represents a structurally unique antibiotic, and the first non-benzoquinone ansamycin, capable of binding to Hsp90 and interfering with its function.


Current Cancer Drug Targets | 2003

Development of radicicol analogues.

Shiro Soga; Yukimasa Shiotsu; Shiro Akinaga; Sreenath V. Sharma

Radicicol, a macrocyclic antibiotic produced by fungi, was originally isolated many years ago, and was described as tyrosine kinase inhibitor. We also rediscovered radicicol as an inhibitor of signal transduction of oncogene products, such as K-ras and v-Src, using yeast and mammalian cell-based assays. In a study of mechanisms of action, it was revealed that radicicol depletes the Hsp90 client signaling molecules in cells, and thus inhibit the signal transduction pathway. In addition, direct binding of radicicol to the N-terminal ATP/ADP binding site of Hsp90 was shown, and thus radicicol has been recognized as a structurally unique antibiotic that binds and inhibits the molecular chaperone Hsp90. Although radicicol itself has little or no activity in animals because of instability in animals, its oxime derivatives showed potent antitumor activities against human tumor xenograft models. Hsp90 client proteins were depleted and apoptosis was induced in the tumor specimen treated with radicicol oxime derivatives. Taken together, these results suggest that the antitumor activity of radicicol oxime derivatives is mediated by binding to Hsp90 and destabilization of Hsp90 client proteins in the tumor. Among Hsp90 clients, we focused on ErbB2 and Bcr-Abl as examples of important targets of Hsp90 inhibitors. Radicicol oxime showed potent antitumor activity against ER negative/ErbB2 overexpressing breast cancer and Bcr-Abl expressing CML. Putative mechanisms of action and future directions of radicicol oxime against these kinds of tumor are discussed.


Journal of Biological Chemistry | 1998

Radicicol Leads to Selective Depletion of Raf Kinase and Disrupts K-Ras-activated Aberrant Signaling Pathway

Shiro Soga; Takako Kozawa; Hiroaki Narumi; Shiro Kyowa Hakko Kogyo Co. Ltd. Akinaga; Kenji Irie; Kunihiro Matsumoto; Sreenath V. Sharma; Hirofumi Nakano; Tamio Mizukami; Mitsunobu Hara

Activation of Ras leads to the constitutive activation of a downstream phosphorylation cascade comprised of Raf-1, mitogen-activated protein kinase (MAPK) kinase, and MAPK. We have developed a yeast-based assay in which the Saccharomyces cerevisiae mating pheromone-induced MAPK pathway relied on co-expression of K-Ras and Raf-1. Radicicol, an antifungal antibiotic, was found to inhibit the K-ras signaling pathway reconstituted in yeast. In K-ras-transformed, rat epithelial, and K-ras-activated, human pancreatic carcinoma cell lines, radicicol inhibited K-Ras-induced hyperphosphorylation of Erk2. In addition, the level of Raf kinase was significantly decreased in radicicol-treated cells, whereas the levels of K-Ras and MAPK remained unchanged. These results suggest that radicicol disrupts the K-Ras-activated signaling pathway by selectively depleting Raf kinase and raises the possibility that pharmacological destabilization of Raf kinase could be a new and powerful approach for the treatment of K-ras-activated human cancers.


Japanese Journal of Cancer Research | 2001

A Radicicol Derivative, KF58333, Inhibits Expression of Hypoxia-inducible Factor-1α and Vascular Endothelial Growth Factor, Angiogenesis and Growth of Human Breast Cancer Xenografts

Junichi Kurebayashi; Takemi Otsuki; Masafumi Kurosumi; Shiro Soga; Shiro Akinaga; Hiroshi Sonoo

A novel oxime derivative of radicicol, KF58333, binds to the heat shock protein 90 (Hsp90) and destabilizes its associated signaling molecules. These effects play a critical role in the growth inhibition of tumor cells. To further investigate the effects of this agent, it was administered to two human breast cancer cell lines, KPL‐1 and KPL‐4, both in vitro and in vivo. KF58333 dose‐dependently inhibited the growth and vascular endothelial growth factor (VEGF) secretion, concomitantly with a decrease in VEGF mRNA expression, in each cell line. This agent also suppressed the increase of VEGF secretion and expression induced by hypoxia (1% O2). Intravenous injections of this agent into nude mice bearing either KPL‐1 or KPL‐4 xenografts significantly inhibited the tumor growth associated with a decrease in the Ki67 labeling index and microvascular area and an increase in apoptosis and the necrotic area. These findings indicate that the antitumor activity of this radicicol derivative may be partly mediated by decreasing VEGF secretion from tumor cells and inhibiting tumor angiogenesis. To explore the action mechanisms of the anti‐angiogenic effect, the expression level of hypoxia‐inducible factor (HIF)‐lα was investigated. KF58333 provided a significant decrease in the HTF‐lα protein expression under both normoxic and hypoxic conditions. In contrast, the mRNA expression of HIF‐lα was not decreased by this agent. It is suggested that the post‐transcriptional down‐regulation of HIF‐lα expression by this agent may result in a decrease of VEGF expression and tumor angiogenesis.


Clinical Cancer Research | 2010

New Molecular and Biological Mechanism of Antitumor Activities of KW-2478, a Novel Nonansamycin Heat Shock Protein 90 Inhibitor, in Multiple Myeloma Cells

Takayuki Nakashima; Toshihiko Ishii; Hisashi Tagaya; Toshihiro Seike; Hiroshi Nakagawa; Yutaka Kanda; Shiro Akinaga; Shiro Soga; Yukimasa Shiotsu

Purpose: The heat shock protein 90 (Hsp90) plays an important role in chaperoning oncogenic client proteins in multiple myeloma (MM) cells, and several Hsp90 inhibitors have shown antitumor activities both in vitro and in vivo. However the precise mechanism of action of Hsp90 inhibitor in MM has not been fully elucidated. Experimental Design: We evaluated the antitumor activities of KW-2478, a nonansamycin Hsp90 inhibitor, in MM cells with various chromosomal translocations of immunoglobulin heavy chain (IgH) loci both in vitro and in vivo. Results: Our studies revealed that exposure of KW-2478 to MM cells resulted in growth inhibition and apoptosis, which were associated with degradation of well-known client proteins as well as a decrease in IgH translocation products (FGFR3, c-Maf, and cyclin D1), and FGFR3 was shown to be a new client protein of Hsp90 chaperon complex. In addition, KW-2478 depleted the Hsp90 client Cdk9, a transcriptional kinase, and the phosphorylated 4E-BP1, a translational inhibitor. Both inhibitory effects of KW-2478 on such transcriptional and translational pathways were shown to reduce c-Maf and cyclin D1 expression. In NCI-H929 s.c. inoculated model, KW-2478 showed a significant suppression of tumor growth and induced the degradation of client proteins in tumors. Furthermore, in a novel orthotopic MM model of i.v. inoculated OPM-2/green fluorescent protein, KW-2478 showed a significant reduction of both serum M protein and MM tumor burden in the bone marrow. Conclusions: These results suggest that targeting such diverse pathways by KW-2478 could be a promising strategy for the treatment of MM with various cytogenetic abnormalities. Clin Cancer Res; 16(10); 2792–802. ©2010 AACR.


Current Pharmaceutical Design | 2012

Hsp90 Inhibitors as Anti-Cancer Agents, from Basic Discoveries to Clinical Development

Shiro Soga; Shiro Akinaga; Yukimasa Shiotsu

Heat shock protein (Hsp) 90 is an ATP-dependent molecular chaperone which stabilizes various oncogenic kinases, including HER2, EGFR, BCR-ABL, B-Raf and EML4-ALK, which are essential for tumor growth. Several monoclonal antibodies and small molecule kinase inhibitors which target these kinases have been identified as potential new molecular target therapeutics. Previous reports have shown that many oncogenic proteins essential for cancer transformation are chaperoned by the Hsp90 complex, and some of these client proteins have been discovered by using Hsp90 inhibitors, such as geldanamycin (GA) and radicicol (RD).Thus far more than 200 client proteins have been identified. In past derivatives of these natural products have been evaluated in clinical trials, but none of the 1st generation of Hsp90 inhibitors has been approved yet because of their limitations in physico-chemical properties and/or safety profiles. However, recent reports have indicated that more than 10 new agents, 2nd generation of Hsp90 inhibitors with different chemotypes from GA and RD, have entered clinical trials and some of them showed clinical efficacy. In this review article, we describe the discoveries of major Hsp90 client proteins in the cancer field by RD derivatives, the history of KW-2478 discovery and development by Kyowa Hakko Kirin, and gave an update on the current status of new Hsp90 inhibitors in clinical trials.


Cancer Chemotherapy and Pharmacology | 2001

Stereospecific antitumor activity of radicicol oxime derivatives.

Shiro Soga; Sreenath V. Sharma; Yukimasa Shiotsu; Makiko Shimizu; Harunobu Tahara; Kazuo Yamaguchi; Yoji Ikuina; Chikara Murakata; Tatsuya Tamaoki; Junichi Kurebayashi; Theodor W. Schulte; Leonard M. Neckers; Shiro Akinaga

Abstract.Purpose: Radicicol is a novel hsp90 antagonist, distinct from the chemically unrelated benzoquinone ansamycin compounds, geldanamycin and herbimycin. Both geldanamycin and radicicol bind in the aminoterminal nucleotide-binding pocket of hsp90, destabilizing the hsp90 client proteins, many of which are essential for tumor cell growth. We describe here antitumor activity of a novel oxime derivative of radicicol, KF58333. We also investigated the mechanism of antitumor activity of KF58333 in comparison with its oxime isomer KF58332. Methods: Antiproliferative activities were determined in a panel of breast cancer cell lines in vitro. We also examined inhibition of hsp90 function and apoptosis induction in erbB2-overexpressing human breast carcinoma KPL-4 cells in vitro. Direct binding activity to hsp90 was assessed by hsp90-binding assays using geldanamycin or radicicol beads. In animal studies, we investigated plasma concentrations of these compounds after i.v. injection in BALB/c mice and antitumor activity against KPL-4 cells transplanted into nude mice. Inhibition of hsp90 function and induction of apoptosis in vivo were investigated using tumor specimens from drug-treated animals. Results: KF58333 showed potent antiproliferative activity against all breast cancer cell lines tested in vitro, and was more potent than its stereoisomer KF58332. These results are consistent with the ability of KF58333 to deplete hsp90 client proteins and the induction of apoptosis in KPL-4 cells in vitro. Interestingly, KF58333, but not KF58332, showed significant in vivo antitumor activity accompanied by induction of apoptosis in KPL-4 human breast cancer xenografts. Although the plasma concentrations of these compounds were equivalent, KF58333, but not KF58332, depleted hsp90 client proteins such as erbB2, raf-1 and Akt in the tumor specimen recovered from nude mice. Conclusions: These results suggest that inhibition of hsp90 function, which causes depletion of hsp90 client proteins in tumor, contributes to the antitumor activity of KF58333, and that the stereochemistry of the oxime moiety is important for the biological activity of radicicol oxime derivatives.


British Journal of Cancer | 2007

Sensitivity of epidermal growth factor receptor and ErbB2 exon 20 insertion mutants to Hsp90 inhibition

Wei-qing Xu; Shiro Soga; Kristin Beebe; Min-Jung Lee; Yeong-Sang Kim; Jane B. Trepel; Leonard M. Neckers

The mature epidermal growth factor receptor (EGFR) neither associates with nor requires the molecular chaperone heat-shock protein 90 (Hsp90). Mutations in EGFR exons 18, 19, and 21 confer Hsp90 chaperone dependence. In non-small cell lung cancer (NSCLC), these mutations are associated with enhanced sensitivity to EGFR inhibitors in vitro and with clinical response in vivo. Although less prevalent, insertions in EGFR exon 20 have also been described in NSCLC. These mutations, however, confer resistance to EGFR inhibitors. In NSCLC, exon 20 insertions have also been identified in the EGFR family member ErbB2. Here, we examined the sensitivity of exon 20 insertion mutants to an Hsp90 inhibitor currently in the clinic. Our data demonstrate that both EGFR and ErbB2 exon 20 insertion mutants retain dependence on Hsp90 for stability and downstream-signalling capability, and remain highly sensitive to Hsp90 inhibition. Use of Hsp90 inhibitors should be considered in NSCLC harbouring exon 20 insertions in either EGFR or ErbB2.


Bioorganic & Medicinal Chemistry Letters | 2003

Improvement of biological activity and proteolytic stability of peptides by coupling with a cyclic peptide

Kenji Shibata; Toshiyuki Suzawa; Shiro Soga; Tamio Mizukami; Koji Yamada; Nobuo Hanai; Motoo Yamasaki

The cyclic moiety of an endothelin antagonist peptide RES-701-1, composed of 10 amino acids with an amide bond between alpha-NH(2) of Gly1 and beta-COOH of Asp9, was coupled to some biologically active peptides aiming to improve their activities and stabilities against proteolytic degradation. Coupling of the cyclic peptide to the N-terminal of RGD-peptides, maximally 4-fold improvement of in vitro activity compared to the original peptide has been achieved. Coupling of it to protein farnesyltransferase inhibiting peptides resulted to improve in vitro activity maximally 3-fold. These peptides coupled with the cyclic peptide also showed enhanced stability against some typical proteases. These results indicate that this cyclic peptide can stabilize the conformations of the peptides coupled to its C-terminus. Coupling of our cyclic peptide is anticipated to be a novel conformational stabilizing method for biologically active peptides, results to improve their activity and stability.


Bioorganic & Medicinal Chemistry Letters | 2008

Conformational significance of EH21A1-A4, phenolic derivatives of geldanamycin, for Hsp90 inhibitory activity.

Hideyuki Onodera; Masami Kaneko; Yuichi Takahashi; Yumiko Uochi; Jun Funahashi; Takayuki Nakashima; Shiro Soga; Makoto Suzuki; Shun-ichi Ikeda; Yoshinori Yamashita; Endang S. Rahayu; Yutaka Kanda; Michio Ichimura

Hsp90 is an attractive chemotherapeutic target because it is essential to maturation of multiple oncogenes. We describe the conformational significance of EH21A1-A4, phenolic derivatives of geldanamycin isolated from Streptomyces sp. Their native free structures are similar to the active form of geldanamycin bound to Hsp90 protein. Their conformational character is a probable reason for their high-affinity binding. Lack of toxic benzoquinone in EH21A1-A4 also adds to their potential as lead compounds for anti-tumor drugs.

Collaboration


Dive into the Shiro Soga's collaboration.

Top Co-Authors

Avatar

Shiro Akinaga

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yutaka Kanda

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonard M. Neckers

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge