Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shiro Takekawa is active.

Publication


Featured researches published by Shiro Takekawa.


Bioorganic & Medicinal Chemistry Letters | 2012

Design and biological evaluation of imidazo[1,2-a]pyridines as novel and potent ASK1 inhibitors

Yoshito Terao; Hideo Suzuki; Masato Yoshikawa; Hiroaki Yashiro; Shiro Takekawa; Yasushi Fujitani; Kengo Okada; Yoshihisa Inoue; Yoshio Yamamoto; Hideyuki Nakagawa; Shuhei Yao; Tomohiro Kawamoto; Osamu Uchikawa

Imidazo[1,2-a]pyridine derivatives were designed, synthesized, and evaluated as inhibitors of the apoptosis signal-regulating kinase 1 (ASK1). These were based on a benzothiazole derivative that was discovered from high-throughput screening of our compound library. As a result, we identified potent, selective, and orally bioavailable ASK1 inhibitors for wide range of therapeutic targets.


Journal of Medicinal Chemistry | 2012

Melanin-concentrating hormone receptor 1 antagonists. Synthesis and structure-activity relationships of novel 3-(aminomethyl)quinolines.

Makoto Kamata; Toshiro Yamashita; Toshihiro Imaeda; Toshio Tanaka; Shinichi Masada; Masahiro Kamaura; Shizuo Kasai; Ryoma Hara; Shigekazu Sasaki; Shiro Takekawa; Asano Asami; Tomoko Kaisho; Nobuhiro Suzuki; Shuntaro Ashina; Hitomi Ogino; Yoshihide Nakano; Yasutaka Nagisa; Koki Kato; Kaneyoshi Kato; Yuji Ishihara

It was found that 3-(aminomethyl)quinoline derivatives showed high binding affinities for melanin-concentrating hormone receptor 1 (MCHR1) with reduced affinity for serotonin receptor 2c (5-HT2c) when the dihydronaphthalene nucleus of compound 1 (human MCHR1, IC(50) = 1.9 nM; human 5-HT2c receptor, IC(50) = 0.53 nM) was replaced by other bicyclic core scaffolds. Among the synthesized compounds, 8-methylquinoline derivative 5v especially showed high binding affinity (IC(50) = 0.54 nM), potent in vitro antagonistic activity (IC(50) = 2.8 nM) for MCHR1, and negligible affinity for 5-HT2c receptor (IC(50) > 1000 nM). Oral administration of 5v significantly and dose-dependently suppressed nocturnal food intake in diet-induced obese rats and did not affect food intake in MCHR1-deficient mice. These results and rat pharmacokinetic study findings suggested that compound 5v is a highly potent, orally bioavailable, and centrally acting nonpeptide MCHR1 antagonist.


Journal of Medicinal Chemistry | 2015

Discovery of a Novel Series of N-Phenylindoline-5-sulfonamide Derivatives as Potent, Selective, and Orally Bioavailable Acyl CoA:Monoacylglycerol Acyltransferase-2 Inhibitors

Kenjiro Sato; Hiroki Takahagi; Takeshi Yoshikawa; Shinji Morimoto; Takafumi Takai; Kousuke Hidaka; Masahiro Kamaura; Osamu Kubo; Ryutaro Adachi; Tsuyoshi Ishii; Toshiyuki Maki; Taisuke Mochida; Shiro Takekawa; Masanori Nakakariya; Nobuyuki Amano; Tomoyuki Kitazaki

Acyl CoA:monoacylglycerol acyltransferase-2 (MGAT2) has attracted interest as a novel target for the treatment of obesity and metabolic diseases. Starting from N-phenylbenzenesulfonamide derivative 1 with moderate potency for MGAT2 inhibition, we explored an effective location of the hydrophobic group at the 1-position to enhance MGAT2 inhibitory activity. Shifting the hydrophobic group to the adjacent position followed by introduction of a bicyclic central core to restrict the substituent orientation produced N-phenylindoline-5-sulfonamide derivative 10b, which displayed much improved potency, with an IC50 value of 1.0 nM. This compound also exhibited excellent selectivity (greater than 30,000-fold) against related acyltransferases (MGAT3, DGAT1, DGAT2, and ACAT1). Subsequent optimization efforts were directed toward improving pharmacokinetic profiles, which resulted in the identification of 5-[(2,4-difluorophenyl)sulfamoyl]-7-(2-oxopyrrolidin-1-yl)-N-[4-(trifluoromethyl)phenyl]-2,3-dihydro-1H-indole-1-carboxamide (24d) endowed with potent MGAT2 inhibitory activity (IC50 = 3.4 nM) and high oral bioavailability (F = 52%, mouse). In a mouse oral fat tolerance test, oral administration of this compound effectively suppressed the elevation of plasma triacylglycerol levels.


Journal of Medicinal Chemistry | 2012

Synthesis, Structure–Activity Relationship, and Pharmacological Studies of Novel Melanin-Concentrating Hormone Receptor 1 Antagonists 3-Aminomethylquinolines: Reducing Human Ether-a-go-go-Related Gene (hERG) Associated Liabilities

Shizuo Kasai; Makoto Kamata; Shinichi Masada; Jun Kunitomo; Masahiro Kamaura; Tomohiro Okawa; Kazuaki Takami; Hitomi Ogino; Yoshihide Nakano; Shuntarou Ashina; Kaoru Watanabe; Tomoko Kaisho; Yumi N. Imai; Sunghi Ryu; Masaharu Nakayama; Yasutaka Nagisa; Shiro Takekawa; Koki Kato; Toshiki Murata; Nobuhiro Suzuki; Yuji Ishihara

Recently, we discovered 3-aminomethylquinoline derivative 1, a selective, highly potent, centrally acting, and orally bioavailable human MCH receptor 1 (hMCHR1) antagonist, that inhibited food intake in F344 rats with diet-induced obesity (DIO). Subsequent investigation of 1 was discontinued because 1 showed potent hERG K(+) channel inhibition in a patch-clamp study. To decrease hERG K(+) channel inhibition, experiments with ligand-based drug designs based on 1 and a docking study were conducted. Replacement of the terminal p-fluorophenyl group with a cyclopropylmethoxy group, methyl group introduction on the benzylic carbon at the 3-position of the quinoline core, and employment of a [2-(acetylamino)ethyl]amino group as the amine portion eliminated hERG K(+) channel inhibitory activity in a patch-clamp study, leading to the discovery of N-{3-[(1R)-1-{[2-(acetylamino)ethyl]amino}ethyl]-8-methylquinolin-7-yl}-4-(cyclopropylmethoxy)benzamide (R)-10h. The compound (R)-10h showed potent inhibitory activity against hMCHR1 and dose-dependently suppressed food intake in a 2-day study on DIO-F344 rats. Furthermore, practical chiral synthesis of (R)-10h was performed to determine the molecules absolute configuration.


Bioorganic & Medicinal Chemistry | 2011

Melanin-concentrating hormone receptor 1 antagonists: synthesis, structure-activity relationship, docking studies, and biological evaluation of 2,3,4,5-tetrahydro-1H-3-benzazepine derivatives.

Shizuo Kasai; Masahiro Kamaura; Makoto Kamata; Kazuyoshi Aso; Hitomi Ogino; Yoshihide Nakano; Kaoru Watanabe; Tomoko Kaisho; Michiko Tawada; Yasutaka Nagisa; Shiro Takekawa; Koki Kato; Nobuhiro Suzuki; Yuji Ishihara

Melanin-concentrating hormone receptor 1 (MCHR1) antagonists have been studied as potential agents for the treatment of obesity. Initial structure-activity relationship studies of in-house hit compound 1a and subsequent optimization studies resulted in the identification of tetrahydroisoquinoline derivative 23, 1-(2-acetyl-1,2,3,4-tetrahydroisoquinolin-7-yl)-4-[4-(4-chlorophenyl)piperidin-1-yl]butan-1-one, as a potent hMCHR1 antagonist. A homology model of hMCHR1 suggests that these compounds interact with Asn 294 and Asp 123 in the binding site of hMCHR1 to enhance binding affinity. Oral administration of compound 23 dose-dependently reduced food intake in diet-induced obesity (DIO)-F344 rats.


Bioorganic & Medicinal Chemistry | 2017

A PEGylated analog of short-length Neuromedin U with potent anorectic and anti-obesity effects

Hiroshi Inooka; Kotaro Sakamoto; Tokuyuki Shinohara; Yasushi Masuda; Michiko Terada; Satoshi Kumano; Kotaro Yokoyama; Jiro Noguchi; Naoki Nishizawa; Hidenori Kamiguchi; Hisashi Fujita; Taiji Asami; Shiro Takekawa; Tetsuya Ohtaki

Neuromedin U (NMU) is a neuropeptide known to regulate food intake and energy homeostasis that is widely distributed in the gastrointestinal tract, hypothalamus, and pituitary. A short form of NMU, porcine NMU-8 has potent agonist activity for the receptors NMUR1 and NMUR2; however, its short half-life precludes its effective use in vivo. To address this limitation, we designed and synthesized NMU-8 analogs modified by polyethylene glycol (PEG) with a molecular weight of 30kDa (PEG30k) via a variety of linkers (i.e., ω-amino- and ω-imino-carboxylic acid linker). Integrated evaluation of NMUR1 and NMUR2 binding affinities in vitro and anorectic activity in mice revealed that the introduction of a linker with a rigid ring group, e.g., 2-(piperazin-1-yl)acetic acid (PipAc), yielded a highly potent anorectic peptide, PEG30k-PipAc-NMU-8 (14), possessing improved receptor binding affinity. Subsequent optimization of the molecular weight of the PEG moiety led to the discovery of a PEG20k conjugate (15), which exhibited significant anti-obesity effect upon once-daily subcutaneous administration in diet-induced obese mice with 10% and 22% body weight loss at doses of 10 and 30nmol/kg, respectively. In addition, 15 reduced the weights of the liver and adipose tissue in a dose-dependent manner and improved the plasma biochemical parameters, e.g., insulin, glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, and total cholesterol. Thus, our results suggest that 15 (NMU-0002), which showed potent and long-lasting biological profiles in vivo, represents a candidate peptide for investigating the central and peripheral actions of NMU and its potential for clinical use.


Bioorganic & Medicinal Chemistry | 2015

Optimization of a novel series of N-phenylindoline-5-sulfonamide-based acyl CoA:monoacylglycerol acyltransferase-2 inhibitors: Mitigation of CYP3A4 time-dependent inhibition and phototoxic liabilities

Kenjiro Sato; Hiroki Takahagi; Osamu Kubo; Kousuke Hidaka; Takeshi Yoshikawa; Masahiro Kamaura; Masanori Nakakariya; Nobuyuki Amano; Ryutaro Adachi; Toshiyuki Maki; Kazumi Take; Shiro Takekawa; Tomoyuki Kitazaki; Tsuyoshi Maekawa

Acyl CoA:monoacylglycerol acyltransferase-2 (MGAT2) has emerged as a potential peripheral target for the treatment of obesity and metabolic disorders. We previously identified a novel series of N-phenylindoline-5-sulfonamide derivatives exemplified by 2 as potent and orally bioavailable MGAT2 inhibitors. Despite its attractive potency, further assessment revealed that this compound exhibited time-dependent inhibition (TDI) of cytochrome P450 3A4 (CYP3A4). To remove the undesirable CYP3A4 TDI activity, structural modification was focused on the 2,4-difluoroaniline moiety on the basis of the assumption that this moiety would be involved in mechanism-based inhibition of CYP3A4 via oxidative metabolism. This led to the finding that the introduction of 4-chloro-2,6-difluoroaniline significantly improved CYP3A4 TDI risk. Further optimization resulted in the discovery of N-(4-chloro-2,6-difluorophenyl)-1-{5-[1-methyl-3-(trifluoromethyl)-1H-pyrazol-5-yl]pyrimidin-2-yl}-7-(2-oxopyrrolidin-1-yl)-2,3-dihydro-1H-indole-5-sulfonamide (27c) with potent MGAT2 inhibitory activity (IC50=7.8 nM) and excellent ADME-Tox profiles including metabolic stability, oral bioavailability, and CYP3A4 TDI. In a mouse oral fat tolerance test, compound 27c effectively and dose-dependently suppressed the elevation of plasma triacylglycerol levels after oral administration at doses of 1 and 3mg/kg. We also discuss mitigation of the phototoxic liability of biaryl derivatives on the basis of the HOMO-LUMO gap hypothesis during the course of optimization efforts.


European Journal of Pharmacology | 2017

A novel and selective melanin-concentrating hormone receptor 1 antagonist ameliorates obesity and hepatic steatosis in diet-induced obese rodent models.

Yayoi Kawata; Shoki Okuda; Natsu Hotta; Hideyuki Igawa; Masashi Takahashi; Minoru Ikoma; Shizuo Kasai; Ayumi Ando; Yoshinori Satomi; Mayumi Nishida; Masaharu Nakayama; Syunsuke Yamamoto; Yasutaka Nagisa; Shiro Takekawa

ABSTRACT Melanin‐concentrating hormone (MCH), a cyclic neuropeptide expressed predominantly in the lateral hypothalamus, plays an important role in the control of feeding behavior and energy homeostasis. Mice lacking MCH or MCH1 receptor are resistant to diet‐induced obesity (DIO) and MCH1 receptor antagonists show potent anti‐obesity effects in preclinical studies, indicating that MCH1 receptor is a promising target for anti‐obesity drugs. Moreover, recent studies have suggested the potential of MCH1 receptor antagonists for treatment of non‐alcoholic fatty liver disease (NAFLD). In the present study, we show the anti‐obesity and anti‐hepatosteatosis effect of our novel MCH1 receptor antagonist, Compound A. Repeated oral administration of Compound A resulted in dose‐dependent body weight reduction and had an anorectic effect in DIO mice. The body weight lowering effect of Compound A was more potent than that of pair‐feeding. Compound A also reduced lipid content and the expression level of lipogenesis‐, inflammation‐, and fibrosis‐related genes in the liver of DIO mice. Conversely, intracerebroventricular infusion of MCH caused induction of hepatic steatosis as well as increase in body weight in high‐fat diet‐fed wild type mice, but not MCH1 receptor knockout mice. The pair‐feeding study revealed the MCH‐MCH1 receptor system affects hepatic steatosis through a mechanism that is independent of body weight change. Metabolome analysis demonstrated that Compound A upregulated lipid metabolism‐related molecules, such as acylcarnitines and cardiolipins, in the liver. These findings suggest that our novel MCH1 receptor antagonist, Compound A, exerts its beneficial therapeutic effect on NAFLD and obesity through a central MCH‐MCH1 receptor pathway.


PLOS ONE | 2016

Pharmacological Inhibition of Monoacylglycerol O-Acyltransferase 2 Improves Hyperlipidemia, Obesity, and Diabetes by Change in Intestinal Fat Utilization

Kazumi Take; Taisuke Mochida; Toshiyuki Maki; Yoshinori Satomi; Megumi Hirayama; Masanori Nakakariya; Nobuyuki Amano; Ryutaro Adachi; Kenjiro Sato; Tomoyuki Kitazaki; Shiro Takekawa

Monoacylglycerol O-acyltransferase 2 (MGAT2) catalyzes the synthesis of diacylglycerol (DG), a triacylglycerol precursor and potential peripheral target for novel anti-obesity therapeutics. High-throughput screening identified lead compounds with MGAT2 inhibitory activity. Through structural modification, a potent, selective, and orally bioavailable MGAT2 inhibitor, compound A (compA), was discovered. CompA dose-dependently inhibited postprandial increases in plasma triglyceride (TG) levels. Metabolic flux analysis revealed that compA inhibited triglyceride/diacylglycerol resynthesis in the small intestine and increased free fatty acid and acyl-carnitine with shorter acyl chains than originally labelled fatty acid. CompA decreased high-fat diet (HFD) intake in C57BL/6J mice. MGAT2-null mice showed a similar phenotype as compA-treated mice and compA did not suppress a food intake in MGAT2 KO mice, indicating that the anorectic effects were dependent on MGAT2 inhibition. Chronic administration of compA significantly prevented body weight gain and fat accumulation in mice fed HFD. MGAT2 inhibition by CompA under severe diabetes ameliorated hyperglycemia and fatty liver in HFD-streptozotocin (STZ)-treated mice. Homeostatic model assessments (HOMA-IR) revealed that compA treatment significantly improved insulin sensitivity. The proximal half of the small intestine displayed weight gain following compA treatment. A similar phenomenon has been observed in Roux-en-Y gastric bypass-treated animals and some studies have reported that this intestinal remodeling is essential to the anti-diabetic effects of bariatric surgery. These results clearly demonstrated that MGAT2 inhibition improved dyslipidemia, obesity, and diabetes, suggesting that compA is an effective therapeutic for obesity-related metabolic disorders.


Journal of Medicinal Chemistry | 2017

Potent Body Weight-Lowering Effect of a Neuromedin U Receptor 2-selective PEGylated Peptide

Yoko Kanematsu-Yamaki; Naoki Nishizawa; Tomoko Kaisho; Hiroaki Nagai; Taisuke Mochida; Tomoko Asakawa; Hiroshi Inooka; Katsuko Dote; Hisashi Fujita; Kouta Matsumiya; Hideki Hirabayashi; Junichi Sakamoto; Tetsuya Ohtaki; Shiro Takekawa; Taiji Asami

Neuromedin U (NMU) is a neuropeptide that mediates a variety of physiological functions via its receptors, NMUR1 and NMUR2. Recently, there has been an increased focus on NMU as a promising treatment option for diabetes and obesity. A short form of NMU (NMU-8) has potent agonist activity for both receptors but is metabolically unstable. Therefore, we designed and synthesized NMU-8 analogues modified by polyethylene glycol (PEG; molecular weight, 20 kDa; PEG20k) via a linker. 3-(2-Naphthyl)alanine substitution at position 19 increased NMUR2 selectivity of NMU-8 analogues with retention of high agonist activity. Compound 37, an NMUR2-selective PEG20k analogue containing piperazin-1-ylacetyl linker, exhibited a potent body weight-lowering effect with concomitant inhibition of food intake in a dose-dependent manner (body weight loss of 12.4% at 30 nmol/kg) by once-daily repeated dosing for 2 weeks in mice with diet-induced obesity.

Collaboration


Dive into the Shiro Takekawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuji Ishihara

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Jun Terauchi

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Taiji Asami

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Naoki Nishizawa

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Kaneyoshi Kato

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Tetsuya Ohtaki

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Hisashi Fujita

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Junichi Sakamoto

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Kazuyoshi Aso

Takeda Pharmaceutical Company

View shared research outputs
Researchain Logo
Decentralizing Knowledge