Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shirong Guo is active.

Publication


Featured researches published by Shirong Guo.


Journal of Plant Physiology | 2008

Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance

Duan Jj; Juan Li; Shirong Guo; Yunyan Kang

We investigated the effects of short-term salinity stress and spermidine application to salinized nutrient solution on polyamine metabolism and various stress defense reactions in the roots of two cucumber (Cucumis sativus L.) cultivars, Changchun mici and Jinchun No. 2. Seedlings grown in nutrient solution salinized with 50mM NaCl for 8d displayed reduced relative water content, net photosynthetic rates and plant growth, together with increased lipid peroxidation and electrolyte leakage in the roots. These changes were more marked in cv. Jinchun No. 2 than in cv. Changchun mici, confirming that the latter cultivar is more salinity-tolerant than the former. Salinity stress caused an increase in superoxide and hydrogen peroxide production, particularly in cv. Jinchun No. 2 roots, while the salinity-induced increase in antioxidant enzyme activities and proline contents in the roots was much larger in cv. Changchun mici than in cv. Jinchun No. 2. In comparison to cv. Jinchun No. 2, cv. Changchun mici showed a marked increase in arginine decarboxylase, ornithine decarboxylase, S-adenosylmethionine decarboxylase and diamine oxidase activities, as well as free spermidine and spermine, soluble conjugated and insoluble bound putrescine, spermidine and spermine contents in the roots during exposure to salinity. On the other hand, spermidine application to salinized nutrient solution resulted in alleviation of the salinity-induced membrane damage in the roots and plant growth and photosynthesis inhibition, together with an increase in polyamine and proline contents and antioxidant enzyme activities in the roots of cv. Jinchun No. 2 but not of cv. Changchun mici. These results suggest that spermidine confers short-term salinity tolerance on cucumber probably through inducing antioxidant enzymes and osmoticants.


Plant Physiology and Biochemistry | 2013

Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress.

Sheng Shu; Lingyun Yuan; Shirong Guo; Jin Sun; Yinghui Yuan

The effects of exogenous spermine (Spm) on plant growth, chlorophyll fluorescence, ultrastructure and anti-oxidative metabolism of chloroplasts were investigated in Cucumis sativus L. under NaCl stress. Salt stress significantly reduced plant growth, chlorophylls content and F(v)/F(m). These changes could be alleviated by foliar spraying with Spm. Salt stress caused an increase in malondialdehyde (MDA) content and superoxide anion [Formula: see text] generation rate in chloroplasts. Application of Spm significantly increased activities of superoxidase dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7), and ascorbate peroxidase (APX, EC 1.11.1.11) which decreased the levels of [Formula: see text] and MDA in the salt-stressed chloroplasts. Salt stress decreased the activities of dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) in the chloroplasts and reduced the contents of dehydroascorbate (DAsA) and glutathione (GSH), but increased monodehydroascorbate reductase (MDAR, EC 1.6.5.4) activity. On the other hand, Spm significantly increased the activities of antioxidant enzymes and levels of antioxidants in the salt-stressed chloroplasts. Further analysis of the ultrastructure of chloroplasts indicated that salinity induced destruction of the chloroplast envelope and increased the number of plastoglobuli with aberrations in thylakoid membranes. However, Spm application to salt-stressed plant leaves counteracted the adverse effects of salinity on the structure of the photosynthetic apparatus. These results suggest that Spm alleviates salt-induced oxidative stress through regulating antioxidant systems in chloroplasts of cucumber seedlings, which is associated with an improvement of the photochemical efficiency of PSII.


Plant Physiology and Biochemistry | 2013

Proteomics reveal cucumber Spd-responses under normal condition and salt stress.

Bin Li; Lizhong He; Shirong Guo; Jing Li; Yanjuan Yang; Bei Yan; Jin Sun; Juan Li

To investigate the effects of exogenous Spd on proteomic changes under normal condition and NaCl stress of 3 days in cucumber seedling leaves, a 2-DE gel electrophoresis and MALDI-TOF/TOF MS was performed. A total of 63 differentially expressed proteins responded to salt stress or exogenous Spd treatments, and they were all successfully identified by MALDI-TOF/TOF MS. Many changes were observed in the levels of proteins involved in energy and metabolic pathways, protein metabolic, stress defense, and other functional proteins. Increased salt tolerance by exogenous Spd would contribute to higher expressions of proteins involved in the SAMs metabolism, protein biosynthesis, and defense mechanisms on antioxidant and detoxification. Meanwhile, the regulation of Calvin cycle, protein folding assembly and the inhibition of protein proteolysis by Spd might play important roles in salt tolerance. This study provides insight that may facilitate a better understanding of the salt resistance by Spd in cucumber seedlings.


Journal of Plant Physiology | 2011

Exogenous calcium affects nitrogen metabolism in root-zone hypoxia-stressed muskmelon roots and enhances short-term hypoxia tolerance

Hongbo Gao; Yongxia Jia; Shirong Guo; Guiyun Lv; Tian Wang; Li Juan

We investigated the effects of short-term root-zone hypoxic stress and exogenous calcium application or deficiency in an anoxic nutrient solution on nitrogen metabolism in the roots of the muskmelon cultivar Xiyu No. 1. Seedlings grown in the nutrient solution under hypoxic stress for 6d displayed significantly reduced plant growth and soluble protein concentrations. However, NO₃⁻ uptake rate and activities of nitrate reductase and glutamate synthase were significantly increased. We also found higher amounts of nitrate, ammonium, amino acids, heat-stable proteins, polyamines, H₂O₂, as well as higher polyamine oxidase activity in the roots. In comparison to the reactions seen under hypoxic stress, exogenous calcium application led to a marked increase in plant weights, photosynthesis parameters, NO₃⁻ uptake rate and contents of nitrate, ammonium, amino acids (e.g., glutamic acid, proline, glycine, cystine, γ-aminobutyric acid), soluble and heat-stable proteins, free spermine, and insoluble bound polyamines. Meanwhile, exogenous calcium application resulted in significantly increased activities for nitrate reductase, glutamine synthetase, and glutamate synthase but decreased activities for diamine and polyamine oxidase, as well as lower H₂O₂ content in roots during exposure to hypoxia. However, calcium deficiency in the nutrient solution decreased plant weight, photosynthesis parameters, NO₃⁻ reduction, amino acids (e.g., alanine, aspartic acid, glutamic acid, γ-aminobutyric acid), protein, all polyamines except for free putrescine, and the activities of glutamate synthase and glutamine synthetase. Additionally, there was an increase in the NO₃⁻ uptake rate, polyamine oxidase activity and H₂O₂ contents under hypoxia-Ca. Simultaneously, exogenous calcium had little effect on nitrate absorption and transformation, photosynthetic parameters, and plant growth under normoxic conditions. These results suggest that calcium confers short-term hypoxia tolerance in muskmelon, most likely by promoting nitrate uptake and accelerating its transformation into amino acids, heat-stable proteins or polyamines, as well as by decreasing polyamine degradation in muskmelon seedlings.


African Journal of Biotechnology | 2011

Effects of proline on photosynthesis, root reactive oxygen species (ROS) metabolism in two melon cultivars ( Cucumis melo L.) under NaCl stress

Zhiming Yan; Shirong Guo; Sheng Shu; Jin Sun; Takafumi Tezuka

Effects of 0.2 mM proline applied to saline nutrient solution on biomass, chlorophyll content, photosynthetic parameters, reactive oxygen species and antioxidant enzymes activities of two melon cultivars (cv. Yuhuang and cv. Xuemei) were examined. Results indicate that exogenous proline increased the fresh and dry weights of both melon cultivars under NaCl stress, raised their chlorophyll content, net photosynthetic rate (Pn), actual efficiency of photosystem II (ΦPSII), enhanced the activity of SOD, POD, CAT, APX, DHAR and GR in their roots, lowered the superoxide anion radical level and reduced the hydrogen peroxide (H 2 O 2 ) content and malondialdehyde (MDA) content. Exogenous proline also alleviate salinity-induced damage of membrane in both melon cultivars. In conclusion, proline treatment enhanced the salinity tolerance of both melon plants and alleviated their salinity-induced damage. However, all the above effects of proline were markedly more significant in cv. Xuemei than in cv. Yuhuang, suggesting that proline had different effects on different cultivars of melon plants. Key words : Proline, photosynthesis, reactive oxygen species, antioxidant enzymes, salt tolerance, NaCl stress.


Proteome Science | 2012

Proteomic analysis of the effects of exogenous calcium on hypoxic-responsive proteins in cucumber roots

Lizhong He; Xiaomin Lu; Jing Tian; Yanjuan Yang; Bin Li; Jing Li; Shirong Guo

BackgroundHypoxia acts as a plant stress factor, particularly in cucumbers plants under hydroponic culture. Calcium is involved in stress signal transmission and in the growth of plants. To determine the effect of exogenous calcium on hypoxic-responsive proteins in cucumber (Cucumis sativus L. cv. Jinchun No.2) roots, proteomic analysis was performed using two-dimensional electrophoresis (2-DE) and mass spectrometry.ResultsCucumber roots were used to analyze the influence of hypoxia on plants. The expressions of 38 protein spots corresponding to enzymes were shown to change in response to hypoxia. Of these, 30 spots were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF/TOF MS analysis). The proteins were categorized according to functional groups, including glycolysis, the tricarboxylic acid (TCA) cycle, fermentative metabolism, nitrogen metabolism, energy metabolism, protein synthesis and defense against stress. Exogenous calcium appeared to alleviate hypoxic stress via these metabolic and physiological systems. Western blotting was used to analyze the accumulation of alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC); calcium further increased the expression of ADH and PDC under hypoxia. In addition, semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to assess the transcript levels of differentially expressed proteins.ConclusionsExogenous calcium enhanced the expression of enzymes involved in glycolysis, the TCA cycle, fermentative metabolism, nitrogen metabolism, and reactive oxygen species (ROS) defense in plants under hypoxia. Calcium appears to induce hypoxic tolerance of cucumber seedlings. These phenomena have prompted us to further investigate the mechanisms by which cucumbers respond to exogenous calcium under hypoxia.


Scientific Reports | 2015

The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress.

Sheng Shu; Yinghui Yuan; Jie Chen; Jin Sun; Wenhua Zhang; Yuanyuan Tang; Min Zhong; Shirong Guo

Polyamines can alleviate the inhibitory effects of salinity on plant growth by regulating photosynthetic efficiency. However, little information is available to explain the specific mechanisms underlying the contribution of polyamines to salt tolerance of the photosynthetic apparatus. Here, we investigated the role of putrescine (Put) on the photosynthetic apparatus of cucumber seedlings under salt stress. We found that NaCl stress resulted in severe ion toxicity and oxidative stress in cucumber chloroplasts. In addition, salinity caused a significant increase in the saturated fatty acid contents of thylakoid membranes. Put altered unsaturated fatty acid content, thereby alleviating the disintegration of thylakoid grana lamellae and reducing the number of plastoglobuli in thylakoid membranes. BN-PAGE revealed Put up-regulated the expression of ATP synthase, CP47, D1, Qb, and psbA proteins and down-regulated CP24, D2, and LHCII type III in NaCl-stressed thylakoid membranes. qRT-PCR analysis of gene expression was used to compare transcript and protein accumulation among 10 candidate proteins. For five of these proteins, induced transcript accumulation was consistent with the pattern of induced protein accumulation. Our results suggest that Put regulates protein expression at transcriptional and translational levels by increasing endogenous polyamines levels in thylakoid membranes, which may stabilise photosynthetic apparatus under salt stress.


Journal of Plant Research | 2014

Effects of exogenous spermidine on photosynthetic capacity and expression of Calvin cycle genes in salt-stressed cucumber seedlings

Sheng Shu; Lifang Chen; Wei Lu; Jin Sun; Shirong Guo; Yinhui Yuan; Jun Li

We investigated the effects of exogenous spermidine (Spd) on growth, photosynthesis and expression of the Calvin cycle-related genes in cucumber seedlings (Cucumis sativus L.) exposed to NaCl stress. Salt stress reduced net photosynthetic rates (PN), actual photochemical efficiency of PSII (ΦPSII) and inhibited plant growth. Application of exogenous Spd to salinized nutrient solution alleviated salinity-induced the inhibition of plant growth, together with an increase in PN and ΦPSII. Salinity markedly reduced the maximum carboxylase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Vcmax), the maximal velocity of RuBP regeneration (Jmax), triose-phosphate utilization capacity (TPU) and carboxylation efficiency (CE). Spd alleviated the negative effects on CO2 assimilation induced by salt stress. Moreover, Spd significantly increased the activities and contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and fructose-1,6-biphosphate aldolase (ALD; aldolase) in the salt-stressed cucumber leaves. On the other hand, salinity up-regulated the transcriptional levels of ribulose-1,5-bisphosphate (RCA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribrokinase (PRK) and down-regulated the transcriptional levels of ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RbcL), ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS), ALD, triose-3-phosphate isomerase (TPI), fructose-1,6-bisphosphate phosphatase (FBPase) and 3-phosphoglyceric acid kinase (PGK). However, Spd application to salt-stressed plant roots counteracted salinity-induced mRNA expression changes in most of the above-mentioned genes. These results suggest that Spd could improve photosynthetic capacity through regulating gene expression and activity of key enzymes for CO2 fixation, thus confers tolerance to salinity on cucumber plants.


Journal of Plant Physiology | 2013

Bottle gourd rootstock-grafting affects nitrogen metabolism in NaCl-stressed watermelon leaves and enhances short-term salt tolerance

Yanjuan Yang; Xiaomin Lu; Bei Yan; Bin Li; Jin Sun; Shirong Guo; Takafumi Tezuka

The plant growth, nitrogen absorption, and assimilation in watermelon (Citrullus lanatus [Thunb.] Mansf.) were investigated in self-grafted and grafted seedlings using the salt-tolerant bottle gourd rootstock Chaofeng Kangshengwang (Lagenaria siceraria Standl.) exposed to 100mM NaCl for 3d. The biomass and NO3(-) uptake rate were significantly increased by rootstock while these values were remarkably decreased by salt stress. However, compared with self-grafted plants, rootstock-grafted plants showed higher salt tolerance with higher biomass and NO3(-) uptake rate under salt stress. Salinity induced strong accumulation of nitrate, ammonium and protein contents and a significant decrease of nitrogen content and the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) in leaves of self-grafted seedlings. In contrast, salt stress caused a remarkable decrease in nitrate content and the activities of GS and GOGAT, and a significant increase of ammonium, protein, and nitrogen contents and NR activity, in leaves of rootstock-grafted seedlings. Compared with that of self-grafted seedlings, the ammonium content in leaves of rootstock-grafted seedlings was much lower under salt stress. Glutamate dehydrogenase (GDH) activity was notably enhanced in leaves of rootstock-grafted seedlings, whereas it was significantly inhibited in leaves of self-grafted seedlings, under salinity stress. Three GDH isozymes were isolated by native gel electrophoresis and their expressions were greatly enhanced in leaves of rootstock-grafted seedlings than those of self-grafted seedlings under both normal and salt-stress conditions. These results indicated that the salt tolerance of rootstock-grafted seedlings might (be enhanced) owing to the higher nitrogen absorption and the higher activities of enzymes for nitrogen assimilation induced by the rootstock. Furthermore, the detoxification of ammonium by GDH when the GS/GOGAT pathway was inhibited under salt stress might play an important role in the release of salt stress in rootstock-grafted seedlings.


Agricultural Sciences in China | 2007

Effects of 24-Epibrassinolide on Antioxidant System in Cucumber Seedling Roots Under Hypoxia Stress

Yunyan Kang; Shirong Guo; Juan Li; Duan Jj

This article aims to study the effects of exogenous 24-epibrassinolide (EBR) on the changes in ROS, activities of antioxidative enzymes and antioxidants in cucumber (Cucumis sativus L.) seedling roots under hypoxia stress. Seedlings of a hypoxia-resistant cultivar, Lubachun 4, and a hypoxia-sensitive cultivar, Zhongnong 8, were hydroponically grown for 8 d in normoxic or hypoxic nutrient solutions that were added or not added with 10^(-3) mg L^(-1) EBR. Under hypoxia stress, the ROS levels and the lipid peroxidation were significantly increased in the roots upon exposure to hypoxia stress, which were inhibited by EBR application. The EBR treatment significantly increased the seedlings growth and SOD, APX, GR activities, and contents of AsA and GSH under hypoxia stress. From the results obtained in this study, it can be concluded that oxidative damage on seedling roots by hypoxia stress can be considerably alleviated and the tolerance of plants was elevated.

Collaboration


Dive into the Shirong Guo's collaboration.

Top Co-Authors

Avatar

Jin Sun

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Sheng Shu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yinghui Yuan

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Nanshan Du

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Bin Li

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yahong An

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lizhong He

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Heng Zhou

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Min Zhong

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yanjuan Yang

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge