Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shitij Kapur is active.

Publication


Featured researches published by Shitij Kapur.


Schizophrenia Bulletin | 2009

The Dopamine Hypothesis of Schizophrenia: Version III—The Final Common Pathway

Oliver Howes; Shitij Kapur

The dopamine hypothesis of schizophrenia has been one of the most enduring ideas in psychiatry. Initially, the emphasis was on a role of hyperdopaminergia in the etiology of schizophrenia (version I), but it was subsequently reconceptualized to specify subcortical hyperdopaminergia with prefrontal hypodopaminergia (version II). However, these hypotheses focused too narrowly on dopamine itself, conflated psychosis and schizophrenia, and predated advances in the genetics, molecular biology, and imaging research in schizophrenia. Since version II, there have been over 6700 articles about dopamine and schizophrenia. We selectively review these data to provide an overview of the 5 critical streams of new evidence: neurochemical imaging studies, genetic evidence, findings on environmental risk factors, research into the extended phenotype, and animal studies. We synthesize this evidence into a new dopamine hypothesis of schizophrenia-version III: the final common pathway. This hypothesis seeks to be comprehensive in providing a framework that links risk factors, including pregnancy and obstetric complications, stress and trauma, drug use, and genes, to increased presynaptic striatal dopaminergic function. It explains how a complex array of pathological, positron emission tomography, magnetic resonance imaging, and other findings, such as frontotemporal structural and functional abnormalities and cognitive impairments, may converge neurochemically to cause psychosis through aberrant salience and lead to a diagnosis of schizophrenia. The hypothesis has one major implication for treatment approaches. Current treatments are acting downstream of the critical neurotransmitter abnormality. Future drug development and research into etiopathogenesis should focus on identifying and manipulating the upstream factors that converge on the dopaminergic funnel point.


Nature | 2011

Grand challenges in global mental health

Pamela Y. Collins; Vikram Patel; Sarah S. Joestl; Dana March; Thomas R. Insel; Abdallah S. Daar; Isabel Altenfelder Santos Bordin; E. Jane Costello; Maureen S. Durkin; Christopher G. Fairburn; Roger I. Glass; Wayne Hall; Yueqin Huang; Steven E. Hyman; Kay Redfield Jamison; Sylvia Kaaya; Shitij Kapur; Arthur Kleinman; Adesola Ogunniyi; Angel Otero-Ojeda; Mu-ming Poo; Vijayalakshmi Ravindranath; Barbara J. Sahakian; Shekhar Saxena; Peter Singer; Dan J. Stein; Warwick P. Anderson; Muhammad A. Dhansay; Wendy Ewart; Anthony Phillips

A consortium of researchers, advocates and clinicians announces here research priorities for improving the lives of people with mental illness around the world, and calls for urgent action and investment.


The Journal of Neuroscience | 1997

Age-Related Differences in Neural Activity during Memory Encoding and Retrieval: A Positron Emission Tomography Study

Roberto Cabeza; Cheryl L. Grady; Lars Nyberg; Anthony R. McIntosh; Endel Tulving; Shitij Kapur; Janine M. Jennings; Sylvain Houle; Fergus I. M. Craik

Positron emission tomography (PET) was used to compare regional cerebral blood flow (rCBF) in young (mean 26 years) and old (mean 70 years) subjects while they were encoding, recognizing, and recalling word pairs. A multivariate partial-least-squares (PLS) analysis of the data was used to identify age-related neural changes associated with (1) encoding versus retrieval and (2) recognition versus recall. Young subjects showed higher activation than old subjects (1) in left prefrontal and occipito-temporal regions during encoding and (2) in right prefrontal and parietal regions during retrieval. Old subjects showed relatively higher activation than young subjects in several regions, including insular regions during encoding, cuneus/precuneus regions during recognition, and left prefrontal regions during recall. Frontal activity in young subjects was left-lateralized during encoding and right-lateralized during recall [hemispheric encoding/retrieval asymmetry (HERA)], whereas old adults showed little frontal activity during encoding and a more bilateral pattern of frontal activation during retrieval. In young subjects, activation in recall was higher than that in recognition in cerebellar and cingulate regions, whereas recognition showed higher activity in right temporal and parietal regions. In old subjects, the differences in blood flow between recall and recognition were smaller in these regions, yet more pronounced in other regions. Taken together, the results indicate that advanced age is associated with neural changes in the brain systems underlying encoding, recognition, and recall. These changes take two forms: (1) age-related decreases in local regional activity, which may signal less efficient processing by the old, and (2) age-related increases in activity, which may signal functional compensation.


Psychological Science | 1999

In Search of the Self: A Positron Emission Tomography Study

Fergus I. M. Craik; Tara M. Moroz; Morris Moscovitch; Donald T. Stuss; Gordon Winocur; Endel Tulving; Shitij Kapur

Previous work using positron emission tomography (PET) has shown that memory encoding processes are associated with preferential activation of left frontal regions of the brain, whereas retrieval processes are associated predominantly with right frontal activations. One possible reason for the asymmetry is that episodic retrieval necessarily involves reference to the self, and the self-concept may be represented (at least partially) in right frontal regions. Accordingly, the present study investigated the possibility that encoding of self-related material might also activate right frontal areas. Eight right-handed volunteers judged trait adjectives under four separate PET scan conditions: (a) relevance to self, (b) relevance to a well-known public figure, (c) social desirability, and (d) number of syllables. The results showed that self-related encoding yielded left frontal activations similar to those associated with other types of semantic encoding, but also specific activations in the right frontal lobe. It is concluded that the concept of self involves both general schematic structures and further specific components involved in episodic memory retrieval.


Molecular Psychiatry | 2012

Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it

Shitij Kapur; Ag Phillips; Thomas R. Insel

Patients with mental disorders show many biological abnormalities which distinguish them from normal volunteers; however, few of these have led to tests with clinical utility. Several reasons contribute to this delay: lack of a biological ‘gold standard’ definition of psychiatric illnesses; a profusion of statistically significant, but minimally differentiating, biological findings; ‘approximate replications’ of these findings in a way that neither confirms nor refutes them; and a focus on comparing prototypical patients to healthy controls which generates differentiations with limited clinical applicability. Overcoming these hurdles will require a new approach. Rather than seek biomedical tests that can ‘diagnose’ DSM-defined disorders, the field should focus on identifying biologically homogenous subtypes that cut across phenotypic diagnosis—thereby sidestepping the issue of a gold standard. To ensure clinical relevance and applicability, the field needs to focus on clinically meaningful differences between relevant clinical populations, rather than hypothesis-rejection versus normal controls. Validating these new biomarker-defined subtypes will require longitudinal studies with standardized measures which can be shared and compared across studies—thereby overcoming the problem of significance chasing and approximate replications. Such biological tests, and the subtypes they define, will provide a natural basis for a ‘stratified psychiatry’ that will improve clinical outcomes across conventional diagnostic boundaries.


Molecular Psychiatry | 2002

NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D 2 and serotonin 5-HT 2 receptors—implications for models of schizophrenia

Shitij Kapur; Seeman P

Ketamine and PCP are commonly used as selective NMDA receptor antagonists to model the putative hypoglutamate state of schizophrenia and to test new antipsychotics. Recent findings question the NMDA receptor selectivity of these agents. To examine this further, we measured the affinity of ketamine and PCP for the high-affinity states of the dopamine D2 and serotonin 5-HT2 receptor and found that ketamine shows very similar affinity at the NMDA receptor and D2 sites with a slightly lower affinity for 5-HT2 (0.5 μM, 0.5 μM and 15 μM respectively), while PCP shows similar affinity for the NMDA and 5-HT2 sites, with a slightly lower affinity for the D2 site (2 μM, 5 μM and 37 μM respectively). Further, ketamine and PCP in clinically relevant doses caused a significant increase in the incorporation of [35S]GTP-γ-S binding in CHO-cells expressing D2 receptors, which was prevented by raclopride, suggesting a partial agonist effect at the D2 receptor. Thus, ketamine and PCP may not produce a selective hypoglutamate state, but more likely produce a non-selective multi-system neurochemical perturbation via direct and indirect effects. These findings confound the inferences one can draw from the ketamine/PCP models of schizophrenia.


Neuropsychopharmacology | 2010

Opposite Effects of Δ-9-Tetrahydrocannabinol and Cannabidiol on Human Brain Function and Psychopathology

Sagnik Bhattacharyya; Paul D. Morrison; Paolo Fusar-Poli; Rocío Martín-Santos; Stefan Borgwardt; Toby T. Winton-Brown; Chiara Nosarti; Colin O’Carroll; Marc L. Seal; Paul Allen; Mitul A. Mehta; James Stone; Nigel Tunstall; Vincent Giampietro; Shitij Kapur; Robin M. Murray; Antonio Waldo Zuardi; José Alexandre S. Crippa; Zerrin Atakan; Philip McGuire

Δ-9-tetrahydrocannabinol (Δ-9-THC) and Cannabidiol (CBD), the two main ingredients of the Cannabis sativa plant have distinct symptomatic and behavioral effects. We used functional magnetic resonance imaging (fMRI) in healthy volunteers to examine whether Δ-9-THC and CBD had opposite effects on regional brain function. We then assessed whether pretreatment with CBD can prevent the acute psychotic symptoms induced by Δ-9-THC. Fifteen healthy men with minimal earlier exposure to cannabis were scanned while performing a verbal memory task, a response inhibition task, a sensory processing task, and when viewing fearful faces. Subjects were scanned on three occasions, each preceded by oral administration of Δ-9-THC, CBD, or placebo. BOLD responses were measured using fMRI. In a second experiment, six healthy volunteers were administered Δ-9-THC intravenously on two occasions, after placebo or CBD pretreatment to examine whether CBD could block the psychotic symptoms induced by Δ-9-THC. Δ-9-THC and CBD had opposite effects on activation relative to placebo in the striatum during verbal recall, in the hippocampus during the response inhibition task, in the amygdala when subjects viewed fearful faces, in the superior temporal cortex when subjects listened to speech, and in the occipital cortex during visual processing. In the second experiment, pretreatment with CBD prevented the acute induction of psychotic symptoms by Δ-9-tetrahydrocannabinol. Δ-9-THC and CBD can have opposite effects on regional brain function, which may underlie their different symptomatic and behavioral effects, and CBDs ability to block the psychotogenic effects of Δ-9-THC.


Nature | 2014

CNVs conferring risk of autism or schizophrenia affect cognition in controls

Hreinn Stefansson; Andreas Meyer-Lindenberg; Stacy Steinberg; Brynja B. Magnusdottir; Katrin Morgen; Sunna Arnarsdottir; Gyda Bjornsdottir; G. Bragi Walters; Gudrun A Jonsdottir; Orla M. Doyle; Heike Tost; Oliver Grimm; Solveig Kristjansdottir; Heimir Snorrason; Solveig R. Davidsdottir; Larus J. Gudmundsson; Gudbjorn F. Jonsson; Berglind Stefánsdóttir; Isafold Helgadottir; Magnus Haraldsson; Birna Jonsdottir; Johan H. Thygesen; Adam J. Schwarz; Michael Didriksen; Tine B. Stensbøl; Michael Brammer; Shitij Kapur; Jónas G. Halldórsson; Stefan J. Hreidarsson; Evald Saemundsen

In a small fraction of patients with schizophrenia or autism, alleles of copy-number variants (CNVs) in their genomes are probably the strongest factors contributing to the pathogenesis of the disease. These CNVs may provide an entry point for investigations into the mechanisms of brain function and dysfunction alike. They are not fully penetrant and offer an opportunity to study their effects separate from that of manifest disease. Here we show in an Icelandic sample that a few of the CNVs clearly alter fecundity (measured as the number of children by age 45). Furthermore, we use various tests of cognitive function to demonstrate that control subjects carrying the CNVs perform at a level that is between that of schizophrenia patients and population controls. The CNVs do not all affect the same cognitive domains, hence the cognitive deficits that drive or accompany the pathogenesis vary from one CNV to another. Controls carrying the chromosome 15q11.2 deletion between breakpoints 1 and 2 (15q11.2(BP1-BP2) deletion) have a history of dyslexia and dyscalculia, even after adjusting for IQ in the analysis, and the CNV only confers modest effects on other cognitive traits. The 15q11.2(BP1-BP2) deletion affects brain structure in a pattern consistent with both that observed during first-episode psychosis in schizophrenia and that of structural correlates in dyslexia.


Biological Psychiatry | 1992

Role of the Dopaminergic System in Depression

Shitij Kapur; J. John Mann

A hypothesis implicating dopamine in depression was proposed over 15 years ago (Randrup et al 1975). The identification of multiple new subtypes of dopamine receptors and evolving views regarding the function of the dopamine systems in the brain require a reexamination of this hypothesis. Results from studies in depression, Parkinsons disease, and animal models of depression suggest a deficiency of dopamine in depression. Dopamine precursors, dopamine agonists, and dopamine reuptake inhibitors show therapeutic efficacy in depression. Electroconvulsive therapy (ECT) and standard pharmacological antidepressants enhance dopamine function. Studies using receptor-specific drugs in clinical trials and neuroimaging studies are needed to further clarify the role of dopamine in depression.


Neuroreport | 1995

Functional brain maps of retrieval mode and recovery of episodic information.

Lars Nyberg; Endel Tulving; Reza Habib; Lars-Göran Nilsson; Shitij Kapur; Sylvain Houle; Roberto Cabeza; Anthony R. McIntosh

Positron emission tomography (PET) was used to identify brain regions associated with two component processes of episodic retrieval; those related to thinking back in subjective time (retrieval mode) and those related to actual recovery of stored information (ecphory). Healthy young subjects recognized words that had been encoded with respect to meaning or the speakers voice. Regardless of how the information had been encoded, recognition was associated with increased activation in regions in right prefrontal cortex, left anterior cingulate, and cerebellum. These activations reflect retrieval mode. Recognition following meaning encoding was specifically associated with increased activation in left temporal cortex, and recognition following voice encoding involved regions in right orbital frontal and parahippocampal cortex. These activations reflect ecphory of differentially encoded information.

Collaboration


Dive into the Shitij Kapur's collaboration.

Top Co-Authors

Avatar

Sylvain Houle

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Gary Remington

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan A. Wilson

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Sridhar Natesan

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ofer Agid

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corey Jones

Centre for Addiction and Mental Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge