Shiv I. S. Grewal
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shiv I. S. Grewal.
Nature Cell Biology | 2002
Nobuhiro Nonaka; Tomoya S. Kitajima; Shihori Yokobayashi; Guoping Xiao; Masayuki Yamamoto; Shiv I. S. Grewal; Yoshinori Watanabe
Fission yeast centromeres, like those of higher eukaryotes, are composed of repeated DNA structures and associated heterochromatin protein complexes, that have a critical function in the faithful segregation of chromosomes during cell division. Cohesin protein complexes, which are essential for sister-chromatid cohesion and proper chromosome segregation, are enriched at centromeric repeats. We have identified a functional and physical link between heterochromatin and cohesin. We find that the preferential localization of cohesins at the centromeric repeats is dependent on Swi6, a conserved heterochromatin protein that is required for proper kinetochore function. Cohesin is also enriched at the mating-type heterochromatic region in a manner that depends on Swi6 and is required to preserve the genomic integrity of this locus. We provide evidence that a cohesin subunit Psc3 interacts with Swi6 and its mouse homologue HP1. These data define a conserved function of Swi6/HP1 in recruitment of cohesin to heterochromatic regions, promoting the proper segregation of chromosomes.
Nature Genetics | 2005
Hugh P. Cam; Tomoyasu Sugiyama; Ee Sin Chen; Xi Chen; Peter C. FitzGerald; Shiv I. S. Grewal
The organization of eukaryotic genomes into distinct structural and functional domains is important for the regulation and transduction of genetic information. Here, we investigated heterochromatin and euchromatin profiles of the entire fission yeast genome and explored the role of RNA interference (RNAi) in genome organization. Histone H3 methylated at Lys4, which defines euchromatin, was not only distributed across most of the chromosomal landscape but was also present at the centromere core, the site of kinetochore assembly. In contrast, histone H3 methylated at Lys9 and its interacting protein Swi6/HP1, which define heterochromatin, coated extended domains associated with a variety of repeat elements and small islands corresponding to meiotic genes. Notably, RNAi components were distributed throughout all these heterochromatin domains, and their localization depended on Clr4/Suv39h histone methyltransferase. Sequencing of small interfering RNAs (siRNAs) associated with the RITS RNAi effector complex identified hot spots of siRNAs, which mapped to a diverse array of elements in these RNAi-heterochromatin domains. We found that Clr4/Suv39h predominantly silenced repeat elements whose derived transcripts, transcribed mainly by RNA polymerase II, serve as a source for siRNAs. Our analyses also uncover an important role for the RNAi machinery in maintaining genomic integrity.
Current Opinion in Genetics & Development | 2002
Shiv I. S. Grewal; Sarah C. R. Elgin
Significant portions of the eukaryotic genome are heterochromatic, made up largely of repetitious sequences and possessing a distinctive chromatin structure associated with gene silencing. New insights into the form of packaging, the associated histone modifications, and the associated nonhistone chromosomal proteins of heterochromatin have suggested a mechanism for providing an epigenetic mark that allows this distinctive chromatin structure to be maintained following replication and to spread within a given domain.
Nature Genetics | 2004
Ken-ichi Noma; Tomoyasu Sugiyama; Hugh P. Cam; André Verdel; Martin Zofall; Songtao Jia; Danesh Moazed; Shiv I. S. Grewal
RNA interference is a conserved mechanism by which double-stranded RNA is processed into short interfering RNAs (siRNAs) that can trigger both post-transcriptional and transcriptional gene silencing. In fission yeast, the RNA-induced initiation of transcriptional gene silencing (RITS) complex contains Dicer-generated siRNAs and is required for heterochromatic silencing. Here we show that RITS components, including Argonaute protein, bind to all known heterochromatic loci. At the mating-type region, RITS is recruited to the centromere-homologous repeat cenH in a Dicer-dependent manner, whereas the spreading of RITS across the entire 20-kb silenced domain, as well as its subsequent maintenance, requires heterochromatin machinery including Swi6 and occurs even in the absence of Dicer. Furthermore, our analyses suggest that RNA interference machinery operates in cis as a stable component of heterochromatic domains with RITS tethered to silenced loci by methylation of histone H3 at Lys9. This tethering promotes the processing of transcripts and generation of additional siRNAs for heterochromatin maintenance.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Ira M. Hall; Ken-ichi Noma; Shiv I. S. Grewal
The regulation of higher-order chromosome structure is central to cell division and sexual reproduction. Heterochromatin assembly at the centromeres facilitates both kinetochore formation and sister chromatid cohesion, and the formation of specialized chromatin structures at telomeres serves to maintain the length of telomeric repeats, to suppress recombination, and to aid in formation of a bouquet-like structure that facilitates homologous chromosome pairing during meiosis. In fission yeast, genes encoding the Argonaute, Dicer, and RNA-dependent RNA polymerase factors involved in RNA interference (RNAi) are required for heterochromatin formation at the centromeres and mating type region. In this study, we examine the effects of deletions of the fission yeast RNAi machinery on chromosome dynamics during mitosis and meiosis. We find that the RNAi machinery is required for the accurate segregation of chromosomes. Defects in mitotic chromosome segregation are correlated with loss of cohesin at centromeres. Although the telomeres of RNAi mutants maintain silencing, length, and localization of the heterochromatin protein Swi6, we discovered defects in the proper clustering of telomeres in interphase mitotic cells. Furthermore, a small proportion of RNAi mutant cells display aberrant telomere clustering during meiotic prophase. This study demonstrates that the fission yeast RNAi machinery is required for the proper regulation of chromosome architecture during mitosis and meiosis.
Nature | 2008
Ee Sin Chen; Ke Zhang; Estelle Nicolas; Hugh P. Cam; Martin Zofall; Shiv I. S. Grewal
Heterochromatin in eukaryotic genomes regulates diverse chromosomal processes including transcriptional silencing. However, in Schizosaccharomyces pombe RNA polymerase II (RNAPII) transcription of centromeric repeats is essential for RNA-interference-mediated heterochromatin assembly. Here we study heterochromatin dynamics during the cell cycle and its effect on RNAPII transcription. We describe a brief period during the S phase of the cell cycle in which RNAPII preferentially transcribes centromeric repeats. This period is enforced by heterochromatin, which restricts RNAPII accessibility at centromeric repeats for most of the cell cycle. RNAPII transcription during S phase is linked to loading of RNA interference and heterochromatin factors such as the Ago1 subunit of the RITS complex and the Clr4 methyltransferase complex subunit Rik1 (ref. 7). Moreover, Set2, an RNAPII-associated methyltransferase that methylates histone H3 lysine 36 at repeat loci during S phase, acts in a pathway parallel to Clr4 to promote heterochromatin assembly. We also show that phosphorylation of histone H3 serine 10 alters heterochromatin during mitosis, correlating with recruitment of condensin that affects silencing of centromeric repeats. Our analyses suggest at least two distinct modes of heterochromatin targeting to centromeric repeats, whereby RNAPII transcription of repeats and chromodomain proteins bound to methylated histone H3 lysine 9 mediate recruitment of silencing factors. Together, these processes probably facilitate heterochromatin maintenance through successive cell divisions.
Science | 2008
Assen Roguev; Sourav Bandyopadhyay; Martin Zofall; Ke Zhang; Tamás Fischer; Sean R. Collins; Hongjing Qu; Michael Shales; Han-Oh Park; Jacqueline Hayles; Kwang-Lae Hoe; Dong-Uk Kim; Trey Ideker; Shiv I. S. Grewal; Jonathan S. Weissman; Nevan J. Krogan
An epistasis map (E-MAP) was constructed in the fission yeast, Schizosaccharomyces pombe, by systematically measuring the phenotypes associated with pairs of mutations. This high-density, quantitative genetic interaction map focused on various aspects of chromosome function, including transcription regulation and DNA repair/replication. The E-MAP uncovered a previously unidentified component of the RNA interference (RNAi) machinery (rsh1) and linked the RNAi pathway to several other biological processes. Comparison of the S. pombe E-MAP to an analogous genetic map from the budding yeast revealed that, whereas negative interactions were conserved between genes involved in similar biological processes, positive interactions and overall genetic profiles between pairs of genes coding for physically associated proteins were even more conserved. Hence, conservation occurs at the level of the functional module (protein complex), but the genetic cross talk between modules can differ substantially.
Cell | 2006
Ken-ichi Noma; Hugh P. Cam; Richard J. Maraia; Shiv I. S. Grewal
Eukaryotic genome complexity necessitates boundary and insulator elements to partition genomic content into distinct domains. We show that inverted repeat (IR) boundary elements flanking the fission yeast mating-type heterochromatin domain contain B-box sequences, which prevent heterochromatin from spreading into neighboring euchromatic regions by recruiting transcription factor TFIIIC complex without RNA polymerase III (Pol III). Genome-wide analysis reveals TFIIIC with Pol III at all tRNA genes, many of which cluster at pericentromeric heterochromatin domain boundaries. However, a single tRNA(phe) gene with modest TFIIIC enrichment is insufficient to serve as boundary and requires RNAi-associated element to restrain heterochromatin spreading. Remarkably, we found TFIIIC localization without Pol III at many sites located between divergent promoters. These sites appear to act as chromosome-organizing clamps by tethering distant loci to the nuclear periphery, at which TFIIIC is concentrated into several distinct bodies. Our analyses uncover a general genome organization mechanism involving conserved TFIIIC complex.
Current Opinion in Genetics & Development | 2010
Shiv I. S. Grewal
Expression profiling of eukaryotic genomes has revealed widespread transcription outside the confines of protein-coding genes, leading to production of antisense and non-coding RNAs (ncRNAs). Studies in Schizosaccharomyces pombe and multicellular organisms suggest that transcription and ncRNAs provide a framework for the assembly of heterochromatin, which has been linked to various chromosomal processes. In addition to gene regulation, heterochromatin is crucial for centromere function, cell fate determination as well as transcriptional and posttranscriptional silencing of repetitive DNA elements. Recently, heterochromatin factors have been shown to suppress antisense RNAs at euchromatic loci. These findings define conserved pathways that probably have major impact on the epigenetic regulation of eukaryotic genomes.
Cell | 1996
Shiv I. S. Grewal; Amar J. S. Klar
Inheritance of the active and inactive states of gene expression by individual cells is crucial for development. In fission yeast, mating-type region consists of three loci called mat1, mat2, and mat3. Transcriptionally silent mat2 and mat3 loci are separated by a 15 kb interval, designated the K-region, and serve as donors of information for transcriptionally active mat1 interconversion. In a strain carrying replacement of 7.5 kb of the K-region with the ura4 gene, we discovered that ura4 silencing and efficiency of mating-type switching were covariegated and were regulated by an epigenetic mechanism. Genetic analyses demonstrated that epigenetic states were remarkably stable not only in mitosis but also in meiosis and were linked to the mating-type region. This study indicates that different epigenetic states are heritable forms of chromatin organization at the mat region.