Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shiv K. Verma is active.

Publication


Featured researches published by Shiv K. Verma.


Acta Tropica | 2010

Antifilarial activity in vitro and in vivo of some flavonoids tested against Brugia malayi.

V. Lakshmi; S.K. Joseph; Saumya Srivastava; Shiv K. Verma; M.K. Sahoo; V. Dube; S.K. Mishra; Murthy Pk

We evaluated the antifilarial activity of 6 flavonoids against the human lymphatic filarial parasite Brugia malayi using an in vitro motility assay with adult worms and microfilariae, a biochemical test for viability (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT)-reduction assay), and two animal models, Meriones unguiculatus (implanted adult worms) and Mastomys coucha (natural infections). In vitro, naringenin and hesperetin killed the adult worms and inhibited (>60%) MTT-reduction at 7.8 and 31.2 μg/ml concentration, respectively. Microfilariae (mf) were killed at 250-500 μg/ml. The half maximal inhibitory concentration (IC(50)) of naringenin for motility of adult females was 2.5 μg/ml. Flavone immobilized female adult worms at 31.2 μg/ml (MTT>80%) and microfilariae at 62.5 μg/ml. Rutin killed microfilariae at 125 μg/ml and inhibited MTT-reduction in female worms for >65% at 500 μg/ml. Naringin had adulticidal effects at 125 μg/ml while chrysin killed microfilariae at 250 μg/ml. In vivo, 50 mg/kg of naringenin elimiated 73% of transplanted adult worms in the Meriones model, but had no effect on the microfilariae in their peritoneal cavity. In Mastomys, the same drug was less effective, killing only 31% of the naturally acquired adult worms, but 51%, when the dose was doubled. Still, effects on the microfilariae in the blood were hardly detectable, even at the highest dose. In summary, all 6 flavonoids showed antifilarial activity in vitro, which can be classed, in a decreasing order: naringenin>flavone=hesperetin>rutin>naringin>chrysin. In jirds, naringenin and flavone killed or sterilized adult worms at 50mg/kg dose, but in Mastomys, where the parasite produces a patent infection, only naringenin was filaricidal. Thus naringenin and flavone may provide a lead for design and development of new antifilarial agent(s). This is the first report on antifilarial efficacy of flavonoids.


Vaccine | 2009

Immunization with inflammatory proteome of Brugia malayi adult worm induces a Th1/Th2-immune response and confers protection against the filarial infection

M.K. Sahoo; Brijesh Sisodia; S. Dixit; S.K. Joseph; R.L. Gaur; Shiv K. Verma; A.K. Verma; Ajit Kumar Shasany; A.A. Dowle; P. Kalpana Murthy

Mastomys coucha and jirds (Meriones unguiculatus) were immunized with four cytokine-stimulating SDS-PAGE resolved fractions F5 (68-84 kDa), F6 (54-68 kDa), F10 (38-42 kDa) and F14 (20-28 kDa) of Brugia malayi adult worm to determine which of these fractions has the potential to influence the establishment of subsequently introduced B. malayi infection in the animals. The proteins in the fractions were analyzed by 2DE and MALDI-TOF. Immunization with F6 suppressed the establishment of third stage larva (L(3)) initiated infection in M. coucha (64%; P<0.01) and jird (42%; P<0.01). Survival of intraperitoneally implanted adult worms in M. coucha was lowered by F6 (72%; P<0.01) and F14 (66%; P<0.05) but not by F5 and F10. Immunization with F6 intensely upregulated both Th1 (IFN-gamma, TNF-alpha, IL-1 beta, IL-2, IL-6, IgG1, IgG2a and lymphoproliferation) and Th2 (IgG2b and IL-10) responses and NO release. Immunostimulatory proteins HSP60, intermediate filament protein, and translation elongation factor EF-2 were identified in F6 fraction by 2DE and MALDI. The findings suggest that F6 protects the host from the parasite via Th1/Th2 type responses and thus holds promise for development as a vaccine.


Acta Tropica | 2011

Sensitization with anti-inflammatory BmAFI of Brugia malayi allows L3 development in the hostile peritoneal cavity of Mastomys coucha

S.K. Joseph; Shiv K. Verma; M.K. Sahoo; S. Dixit; A.K. Verma; Vikas Kushwaha; Kirti Saxena; A. Sharma; Jitendra Kumar Saxena; Murthy Pk

Filarial parasites survive by inducing tolerance in host but the antigens and mechanisms involved are not clear. Recently we found that BmAFI, a Sephadex G-200 eluted fraction of Brugia malayi adult worm extract, stimulates IL-10 release from THP-1 cells. In the present study, we determined the SDS-PAGE profile of BmAFI and infective 3rd stage larva (L3), investigated the effect of pre-sensitization of host with BmAFI on the survival and development of L3 in the non-permissive peritoneal cavity (p.c.) of the permissive host Mastomys coucha and in the p.c. of non-permissive Swiss mice, and studied immunological correlates for the observed effects. The parasite development and burden in p.c., was determined in sensitized infected M. coucha and Swiss mice and the release of TGF-β, IL-4, IL-10, IL-13, IFN-γ and NO, cellular proliferative response to Con A and BmAFI and levels of IgG subclasses and IgE were determined in sensitized infected M. coucha. Cellular proliferative response to Con A and BmAFI, mRNA expression of GATA-3, CTLA-4 and T-bet were determined in sensitized Swiss mice. In addition, the parasitological parameter was also studied in BmAFI-sensitized M. coucha exposed to the infection by standard subcutaneous (s.c.) route to assess whether sensitization enhances the intensity of infection. BmAFI-sensitization permitted survival of L3 and their development to adult stage by day 60 p.i. in the p.c. of M. coucha; in non-sensitized animals L3 could molt to L4 only and no parasite could be recovered beyond day 30 p.i. In M. coucha that received infection by s.c. route, pre-sensitization with BmAFI enhanced the microfilaraemia and adult worm recovery. In sensitized Swiss mice L3 could successfully molt to L4 in p.c. with improved recovery of parasite. BmAFI sensitization upregulated TGF-β and IL-10 release, IgG1 and IgG2b levels, GATA-3 and CTLA-4 mRNA expression, suppressed the cellular proliferative response and downregulated Con A stimulated response, IgE, IL-13, IFN-γ and NO responses. Immunoblot analysis showed that the BmAFI antiserum also strongly reacts with some L3 molecules. The results show, for the first time, that sensitization with the anti-inflammatory BmAFI which shares some of its molecules with those in L3, facilitates parasite survival in the non-permissive p.c. of the permissive host M. coucha, render a non-permissive Swiss mouse partially permissive to infection and enhances parasite load in M. coucha receiving the infection through permissive s.c. route by evoking a modified Th2 type of response and anti-inflammatory milieu. In conclusion, the findings suggest that the anti-inflammatory BmAFI fraction facilitates survival of B. malayi infection even in non-permissive environment.


Journal of Drug Targeting | 2010

Humoral and cell-mediated immune-responses after administration of a single-shot recombinant hepatitis B surface antigen vaccine formulated with cationic poly(l-lactide) microspheres

Vinay Saini; Vikas Jain; M. S. Sudheesh; Saurabh Dixit; R. L. Gaur; M.K. Sahoo; S.K. Joseph; Shiv K. Verma; K.S. Jaganathan; P.K. Murthy; Dharmveer Kohli

The present investigations were aimed to compare the humoral and cell-mediated immune responses between recombinant hepatitis B surface antigens (HBsAg) adsorbed L-PLA microspheres (Ms) vaccine (single-shot) and marketed alum-HBsAg vaccine (two-doses). The blank cationic (cetyltrimethyammoniumbromide) microspheres were prepared by the double emulsion (w/o/w) solvent evaporation technique. The HBsAg was adsorbed onto the surface of blank cationic microspheres. These microspheres were characterized in vitro for their size, shape, adsorption-efficiency, in-process stability, and HBsAg release studies. Specific humoral immune responses (IgM and IgG) and cell-mediated immune responses (cellular-proliferation) assay including release of interferon-gamma (IFN-γ), interleukin-2 (IL-2), and nitric oxide (NO) from host’s cells stimulated with HBsAg or lipopolysaccharide (LPS)/ concanavalin A (con A) in-vitro were determined. Based on these findings, it was concluded that the single injection (using subcutaneous-route) of the polymeric microspheres produced better immune response (both humoral and cell-mediated) than two injections of a conventional alum-HBsAg vaccine. These data demonstrate high potential of polymeric microspheres for their use as a carrier adjuvant for hepatitis B vaccine.


Experimental Parasitology | 2012

Heat shock protein 60 of filarial parasite Brugia malayi: cDNA cloning, expression, purification and in silico modeling and analysis of its ATP binding site.

R.C. Misra; A.K. Verma; Shiv K. Verma; Vikash Kumar; Waseem Ahmad Siddiqui; Mohammad Imran Siddiqi; P.K. Murthy

We report here cloning and expression of full length mitochondrial HSP60 gene of Brugia malayi adult worm (mtHSP60bm), purification of the gene product by affinity chromatography, its in silico 3D structure and the sequence homology of the protein with Escherichia coli GroEL/ES and human HSP60. The ATP binding pocket of human HSP60 and mtHSP60bm were analyzed and compared using in silico models. The distribution of HSP60 in different life-stages of the parasite was determined using antibodies raised against recombinant mtHSP60bm (rmtHSP60bm). mtHSP60bm was present in all life-stages of the parasite except third stage infective larvae, in which it could be induced by heat-shock, and showed high degree of homology with E. coli GroEL/ES. The ATP binding pocket of HSP60 in humans, E. coli and B. malayi were also found structurally conserved. This similarity between human and mtHSP60bm might be useful in understanding the host-parasite interactions. This is the first ever report on distribution, cloning, sequence homology and ATP binding site of mtHSP60bm.


Chronicles of Young Scientists | 2011

Antifilarial activity of gum from Moringa oleifera Lam. on human lymphatic filaria Brugia malayi

Vikas Kushwaha; Kirti Saxena; Shiv K. Verma; Vijai Lakshmi; Rk Sharma; Murthy Pk

Aim: Currently available antifilarial drugs diethylcarbamazine, ivermectin and albendazole and their combinations, are not able to control lymphatic filariasis. Therefore, a better antifilarial agent is urgently required for proper management of the disease. Materials and Methods: In this study, we evaluated the antifilarial activity of gum extract of plant Moringa oleifera Lam. against the human lymphatic filarial parasite Brugia malayi using adult worms and microfilariae (mf) in two in vitro assays (motility and inhition in MTT reduction) for viability and two animal models, primary (Meriones unguiculatus implanted with B. malayi adult worms in the peritoneal cavity) and secondary (subcutaneous B. malayi infective larvae induced Mastomys coucha, the model closer to the natural human filarial infection) screens. Results: The gum extract inhibited 100% motility (irreversible loss of motility) of mf and inhibited more than 56% MTT reduction potential of the adult female worms. The extract was safe in cytotoxicity test using Vero cell line, therefore followed in vivo in primary and secondary screens. In primary screen, the extract (5×500 mg/kg) caused 69% macrofilaricidal and 83% sterilization of female worms and 44% macrofilaricidal activity in secondary screen (5 × 1000 mg/kg) by oral route. Conclusion: Thus, it is concluded that the gum of the plant is macrofilaricidal in both in vitro and in vivo and may provide valuable leads for design and development of new antifilarial agents. This is the first ever report on the antifilarial efficacy of M. oleifera.


Vaccine | 2013

Poly(d,l)-lactide-co-glycolide (PLGA) microspheres as immunoadjuvant for Brugia malayi antigens

Vinay Saini; Shiv K. Verma; P. Kalpana Murthy; Dharmveer Kohli

Recently we identified in Brugia malayi adult worm extract (BmA) a pro-inflammatory 54-68kDa SDS-PAGE resolved fraction F6 that protects the host from the parasite via Th1/Th2 type responses. We are currently investigating F6 as a potential source of vaccine candidate(s) and the present study is aimed at investigating the suitability of poly(d,l)-lactide-co-glycolide microspheres (PLGA-Ms) as immunoadjuvant for the antigen administration in a single dose. PLGA-Ms were prepared aseptically by a modified double emulsion (w/o/w) solvent evaporation technique and their size, shape, antigen adsorption efficiency, in-process stability, and antigen release were characterized. Swiss mice were immunized by a single subcutaneous administration of BmA and F6 adsorbed on PLGA-Ms (lactide:glycolide ratios 50:50 and 75:25) and the immune responses were compared with administration of 1 or 2 doses of plain BmA and F6. Specific IgG, IgG1, IgG2a, IgG2b, IgE levels in serum, cellular-proliferative response and release of IFN-γ, TNF-α and nitric oxide from the cells of immunized host in response to the antigens/LPS/Con A challenge and antibody-dependant cellular cytotoxicity (ADCC) to parasite life stages were determined. The average size of PLGA-Ms 50:50 was smaller than the size of PLGA-Ms 75:25 and the % antigen adsorption efficiency of PLGA-Ms 50:50 was greater than PLGA-Ms 75:25. Single shot injection of PLGA-Ms 50:50/75:25-BmA/F6 produced better and stronger IgG, IgG1/IgG2a and cell-mediated immune responses than even two injections of plain BmA or F6. Further, PLGA-Ms 50:50-F6 produced stronger responses than PLGA-Ms 50:50-BmA. Anti-PLGA-Ms 50:50-F6 antibodies elicited higher ADCC response to infective larval and microfilarial stages of the parasite than anti-PLGA-Ms 75:25-F6 antibodies. The findings demonstrate that PLGA-Ms 50:50 is an excellent adjuvant for use with F6 in a single administration. This is the first ever report on PLGA as immunoadjuvant for filarial antigens.


International Journal of Pharmaceutics | 2011

Sufficiency of a single administration of filarial antigens adsorbed on polymeric lamellar substrate particles of poly (L-lactide) for immunization.

Vinay Saini; Shiv K. Verma; Malaya K. Sahoo; Dharm V. Kohli; P. Kalpana Murthy

A majority of antigens require repeated administration to ensure development of adequate humoral and cell mediated immune response. To minimize the number of administrations required, we investigated the utility of biodegradable polymeric lamellar substrate particles of poly (l-lactide) (PLSP) as adjuvant for filarial antigen preparations. PLSP was prepared and characterized and Brugia malayi adult worm extract (BmA) and its SDS-PAGE resolved 54-68 kDa fraction F6 were adsorbed on to PLSP. Swiss mice received a single injection of PLSP-F6, PLSP-BmA, FCA-F6, FCA-BmA and two doses of the plain antigens. Specific IgG, IgG1, IgG2a, IgG2b and IgE levels in serum, IFN-γ, TNF-α and nitric oxide (NO) release from cells of the immunized animals in response to antigen challenge were studied. The average size of PLSP particles was <10 μm and its % antigen adsorption efficacy was 60.4, 55.2 and 61.6 for BSA, BmA and F6, respectively. Single injection of PLSP-F6 or PLSP-BmA produced better immune responses compared to one injection of FCA-F6/BmA or two injections of plain F6 or BmA. Moreover, PLSP-F6 produced much better response than PLSP-BmA. These data demonstrate for the first time that PLSP is a superior immunoadjuvant for enhancing the immune response to filarial BmA and F6 molecules and obviates the need for multiple immunization injections.


Asian Pacific Journal of Tropical Medicine | 2011

Inflammatory mediator release by Brugia malayi from macrophages of susceptible host Mastomys coucha and THP-1 and RAW 264.7 cell lines

Shiv K. Verma; Vikas Kushwaha; Vijaya Dubey; Kirti Saxena; Aakanksha Sharma; Puvvada Kalpana Murthy

OBJECTIVE To investigate which life stage of the parasite has the ability to stimulate release of pro- or anti-inflammatory mediators from macrophages. METHODS The human macrophage/monocyte cell line THP-1, the mouse macrophage cell line RAW 264.7 and naive peritoneal macrophages (PM) from the rodent host Mastomys coucha (M. coucha) were incubated at 37 °C in 5% CO(2) atmosphere with extracts of microfilariae (Mf), third stage infective larvae (L(3)) and adult worms (Ad) of Brugia malayi. After 48 hr post exposure, IL-1β, IL-6, TNF-α, IL-10 and nitric oxide (NO) in cell-free supernatants were estimated. RESULTS Extracts of all the life stages of the parasite were capable of stimulating pro- (IL-1β, IL-6 and TNF-α) and anti-inflammatory (IL-10) cytokines in both the cell lines and peritoneal macrophages of M. coucha. Mf was the strongest stimulator of pro-inflammatory cytokines followed by L(3) and Ad; however, Ad was a strong stimulator of IL-10 release. Mf was found to have potential to modulate LPS-induced NO release in RAW cells. Ad-induced NO release was concentration dependent with maximum at 20 μg/mL in both RAW and PMs. CONCLUSIONS The results show that parasites at all life stages were capable of stimulating pro- (IL-1β, IL-6 and TNF-α) and anti-inflammatory (IL-10) cytokines and NO release from macrophages of susceptible host M. coucha, human and mouse macrophage cell lines. Mf can suppress the LPS-induced NO release in RAW cells. The findings also show that the two cell lines may provide a convenient in vitro system for assaying parasite-induced inflammatory mediator release.


Vaccine | 2017

Recombinant Calponin of human filariid Brugia malayi: Secondary structure and immunoprophylactic potential

Shiv K. Verma; Ashish Arora; P. Kalpana Murthy

In the search for potential vaccine candidates for the control of human lymphatic filariasis, we recently identified calponin-like protein, that regulates actin/myosin interactions, in a proinflammatory fraction F8 (45.24-48.64kDa) of Brugia malayi adult worms. In the present study, the gene was cloned, expressed, and the recombinant Calponin of B. malayi (r-ClpBm) was prepared and characterized. r-ClpBm bears homology with OV9M of Onchocerca volvulus, a non-lymphatic filariid that causes loss of vision and cutaneous pathology. r-ClpBm was found to be a ∼45kDa protein that folds into a predominantly α-helix conformation. The protective efficacy of r-ClpBm against B. malayi infection in Mastomys coucha was investigated by assessing the course of microfilaraemia and adult worm burden in the host immunized with r-ClpBm and subsequently infected with infective third stage larvae (L3). Expression of the Calponin was detected in all life stages (microfilariae, L3, L4, L5 and adults) of the parasite and immunization with r-ClpBm partially protected M. coucha against establishment of infection as inferred by ∼42% inhibition in parasite burden. Upregulated cellular proliferation, TNF-α, IFN-γ, IL-1β, IL-4, nitric oxide (NO) release, expression of iNOS, and specific IgG, IgG1 and IgG2b in immunized animals correlated with parasitological findings. r-ClpBm immunization caused degranulation in majority of mast cells indicating possible involvement of mast cell products in reducing the parasite survival. It appears that complex mechanisms including Th1, Th2, NO and mast cells are involved in the clearance of infection. To the best of our knowledge this is the first report on cloning, expression of the gene and purification of r-ClpBm, determination of its secondary structure and its ability to partially prevent establishment of B. malayi infection. Thus, r-ClpBm may further be studied and developed in combination with other protective molecules of B. malayi as a component of potential filarial cocktail vaccine candidate.

Collaboration


Dive into the Shiv K. Verma's collaboration.

Top Co-Authors

Avatar

S.K. Joseph

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

P. Kalpana Murthy

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Vikas Kushwaha

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

A.K. Verma

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

M.K. Sahoo

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Murthy Pk

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kirti Saxena

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Mohammad Imran Siddiqi

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

P.K. Murthy

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Richa Verma

Central Drug Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge