Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shivendra V. Sahi is active.

Publication


Featured researches published by Shivendra V. Sahi.


Journal of Hazardous Materials | 2011

Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii.

Mohd Israr; Amy Jewell; Dhirendra Kumar; Shivendra V. Sahi

Sesbania drummondii seedlings were grown in a medium to which lead (Pb), copper (Cu), nickel (Ni) and zinc (Zn) were added singly and in combinations in order to assess the effects of metal interactions on seedling growth, metal accumulation and anti-oxidative system. S. drummondii growth was significantly inhibited with metal treatments. S. drummondii accumulated substantially higher concentrations of metals in the roots than shoots. The uptake of metals followed the order Pb>Cu>Zn>Ni in roots and Pb>Zn>Cu>Ni in shoots. In addition, uptake of a single metal by S. drummondii was affected by the presence of a second metal, suggesting an antagonistic effect or competition between metals at the plant uptake site. A significant increase in both enzymatic [superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR)] and non-enzymatic (glutathione) antioxidant was observed in the S. drummondii seedlings exposed to different metal treatments. The enhancement in enzyme activities followed the order of Cu>Ni>Pb>Zn. However, compared to the effect of individual metal, metals in combination increased the enzyme activities to varying degrees.


Environmental Science & Technology | 2014

Evidence of Translocation and Physiological Impacts of Foliar Applied CeO2 Nanoparticles on Cucumber (Cucumis sativus) Plants

Jie Hong; Jose R. Peralta-Videa; Cyren M. Rico; Shivendra V. Sahi; Marian N. Viveros; Jane Bartonjo; Lijuan Zhao; Jorge L. Gardea-Torresdey

Currently, most of the nanotoxicity studies in plants involve exposure to the nanoparticles (NPs) through the roots. However, plants interact with atmospheric NPs through the leaves, and our knowledge on their response to this contact is limited. In this study, hydroponically grown cucumber (Cucumis sativus) plants were aerially treated either with nano ceria powder (nCeO2) at 0.98 and 2.94 g/m(3) or suspensions at 20, 40, 80, 160, and 320 mg/L. Fifteen days after treatment, plants were analyzed for Ce uptake by using ICP-OES and TEM. In addition, the activity of three stress enzymes was measured. The ICP-OES results showed Ce in all tissues of the CeO2 NP treated plants, suggesting uptake through the leaves and translocation to the other plant parts. The TEM results showed the presence of Ce in roots, which corroborates the ICP-OES results. The biochemical assays showed that catalase activity increased in roots and ascorbate peroxidase activity decreased in leaves. Our findings show that atmospheric NPs can be taken up and distributed within plant tissues, which could represent a threat for environmental and human health.


Journal of Hazardous Materials | 2014

Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms

Sanghamitra Majumdar; Jose R. Peralta-Videa; Susmita Bandyopadhyay; Hiram Castillo-Michel; Jose A. Hernandez-Viezcas; Shivendra V. Sahi; Jorge L. Gardea-Torresdey

Overwhelming use of engineered nanoparticles demands rapid assessment of their environmental impacts. The transport of cerium oxide nanoparticles (nCeO2) in plants and their impact on cellular homeostasis as a function of exposure duration is not well understood. In this study, kidney bean plants were exposed to suspensions of ∼ 8 ± 1 nm nCeO2 (62.5 to 500 mg/L) for 15 days in hydroponic conditions. Plant parts were analyzed for cerium accumulation after one, seven, and 15 days of nCeO2 exposure. The primary indicators of stress like lipid peroxidation, antioxidant enzyme activities, total soluble protein and chlorophyll contents were studied. Cerium in tissues was localized using scanning electron microscopy and synchrotron μ-XRF mapping, and the chemical forms were identified using μ-XANES. In the root epidermis, cerium was primarily shown to exist as nCeO2, although a small fraction (12%) was biotransformed to Ce(III) compound. Cerium was found to reach the root vascular tissues and translocate to aerial parts with time. Upon prolonged exposure to 500 mg nCeO2/L, the root antioxidant enzyme activities were significantly reduced, simultaneously increasing the root soluble protein by 204%. In addition, leafs guaiacol peroxidase activity was enhanced with nCeO2 exposure in order to maintain cellular homeostasis.


Environmental Toxicology and Chemistry | 2004

Chemical speciation and cellular deposition of lead in Sesbania drummondii

Nilesh C. Sharma; Jorge L. Gardea-Torresdey; Jason G. Parsons; Shivendra V. Sahi

The internalized speciation of lead in roots and leaves of Sesbania drummondii, a lead hyperaccumulator, grown in lead nitrate solution was studied using x-ray absorption near-edge structure and extended x-ray absorption fine structure. Lead was predominantly present as lead acetate in both plant tissues. The other dominant forms of accumulation were lead-sulfur compounds. Whereas lead sulfate and sulfide were found in leaves, only lead sulfide was detected in root samples. These observations indicate that S. drummondii is able to biotransform lead nitrate in the nutrient solution to lead acetate and sulfate in its tissues. Complexation with acetate and sulfate may be a lead detoxification strategy in this plant. Transmission-electron microscopy revealed the pattern of lead distribution in and around the cells. Dense distributions of lead grains were detected in root cell walls and plasma membranes, whereas evidence for vacuolar transport of lead was noticed in the stem cells.


Journal of Environmental Quality | 2009

Induction of lead-binding phytochelatins in vetiver grass [Vetiveria zizanioides (L.)].

Syam S. Andra; Rupali Datta; Dibyendu Sarkar; Konstantinos C. Makris; Conor Mullens; Shivendra V. Sahi; Stephan B. H. Bach

Elevated lead (Pb) concentrations in residential houseyards around house walls painted with Pb-based pigments pose serious human health risks, especially to children. Vetiver grass (Vetiveria zizanioides L.) has shown promise for use in in situ Pb phytoremediation efforts. However, little is known about the biochemical mechanisms responsible for the observed high Pb tolerance by vetiver. We hypothesized that vetiver exposure to Pb induced the synthesis of phytochelatins (PC(n)) and the formation of Pb-PC(n) complexes, alleviating the phytotoxic effects of free Pb ions. Our main objective was to identify PC(n) and Pb-PC(n) complexes in root and shoot compartments of vetiver grass using high-performance liquid chromatography coupled to electrospray mass spectrometry (HPLC-ES-MS). After 7 d of exposure to Pb, vetiver accumulated up to 3000 mg Pb kg(-1) in shoot tissues, but much higher Pb concentrations were measured in root ( approximately 20,000 mg kg(-1)), without phytotoxic symptoms. Scanning electron micrographs showed Pb deposition in the vascular tissues of root and shoot, suggesting Pb translocation to shoot. Collision-induced dissociation analyses in MS/ MS mode during HPLC-ES-MS analysis allowed for the confirmation of four unique PC(n) (n = 1-4) based on their respective amino acid sequence. The high tolerance of vetiver grass to Pb was attributed to the formation of PC(n) and Pb-PC(n) complexes within the plant tissues, using ES-MS and Pb mass isotopic patterns. These data illustrate the mechanism of high Pb tolerance by vetiver grass, suggesting its potential usefulness for the remediation of Pb-contaminated residential sites.


Ecotoxicology and Environmental Safety | 2014

Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: A potential plant for phytoremediation

Srinivasan Malar; Rajendiran Manikandan; Paulo J.C. Favas; Shivendra V. Sahi; Perumal Venkatachalam

The present study was aimed at evaluating phytotoxicity of various concentrations of lead nitrate (0, 100, 200, 400, 600, 800 and 1000mgL(-1)) in Sesbania grandiflora. The seedling growth was significantly affected (46%) at 1000mgL(-1) lead (Pb) treatment. Accumulation of Pb content was high in root (118mgg(-1) dry weight) than in shoot (23mgg(-1) dry weight). The level of photosynthetic pigment contents was gradually increased with increasing concentrations of Pb. Malondialdehyde (MDA) content increased in both the leaves as well as roots at 600mgL(-1) Pb treatment and decreased at higher concentrations. The activity of antioxidative enzymes such as superoxide dismutase and peroxidase were positively correlated with Pb treatment while catalase and ascorbate peroxidase activities increased up to 600mgL(-1) Pb treatment and then slightly decreased at higher concentrations. Isozyme banding pattern revealed the appearance of additional isoforms of superoxide dismutase and peroxidase in Pb treated leaf tissues. Isozyme band intensity was more consistent with the respective changes in antioxidative enzyme activities. Random amplified polymorphic DNA results indicated that genomic template stability (GTS) was significantly affected based on Pb concentrations. The present results suggest that higher concentrations of Pb enhanced the oxidative damage by over production of ROS in S. grandiflora that had potential tolerance mechanism to Pb as evidenced by increased level of photosynthetic pigments, MDA content, and the level of antioxidative enzymes. Retention of high levels of Pb in root indicated that S. grandiflora has potential for phytoextracting heavy metals by rhizofiltration.


Plant Physiology and Biochemistry | 2009

Influence of phosphorus nutrition on growth and metabolism of Duo grass (Duo festulolium)

Padmanabhan Priya; Shivendra V. Sahi

Use of suitable plants that can extract and concentrate excess P from contaminated soil serves as an attractive method of phytoremediation. Plants vary in their potential to assimilate different organic and inorganic P-substrates. In this study, the response of Duo grass (Duo festulolium) to variable rates of soil-applied potassium dihydrogen phosphate (KH(2)PO(4)) on biomass yield and P uptake were studied. Duo grown for 5 weeks in soil with 2.5, 5 and 7.5 g KH(2)PO(4) kg(-1) soil showed a significantly higher biomass and shoot P content of 8.3, 11.4 and 12.3g P kg(-1) dry weight respectively compared to plants that received no soil added P. Also, the ability of Duo to metabolize different forms of P-substrates was determined by growing them in sterile Hoaglands agar media with different organic and inorganic P-substrates, viz. KH(2)PO(4), glucose-1-phosphate (G1P), inositiol hexaphosphate (IHP), adenosine triphosphate (ATP) and adenosine monophosphate (AMP) for 2 weeks. Plants on agar media with different P-substrates also showed enhanced biomass yield and shoot P relative to no P control and the P uptake was in the order of ATP>KH(2)PO(4)>G1P>IHP=AMP>no P control. The activities of both phytase (E.C.3.1.3.26) and acid phosphatases (E.C.3.1.3.2) were higher in all the P received plants than the control. Duo grass is capable of extracting P from the soil and also from the agar media and thus it can serve as possible candidate for phytoextraction of high P-soil.


Plant Physiology and Biochemistry | 2016

Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research

Ashley Cox; Perumal Venkatachalam; Shivendra V. Sahi; Nilesh C. Sharma

Nanoparticles (NPs) have become widely used in recent years for many manufacturing and medical processes. Recent literature suggests that many metallic nanomaterials including those of silver (Ag) and titanium dioxide (TiO2) cause significant toxic effects in animal cell culture and animal models, however, toxicity studies using plant species are limited. This review examines current progress in the understanding of the effect of silver and titanium dioxide nanoparticles on plant species. There are many facets to this ongoing environmental problem. This review addresses the effects of NPs on oxidative stress-related gene expression, genotoxicity, seed germination, and root elongation. It is largely accepted that NP exposure results in the cellular generation of reactive oxygen species (ROS), leading to both positive and negative effects on plant growth. However, factors such as NP size, shape, surface coating and concentration vary greatly among studies resulting in conflicting reports of the effect at times. In addition, plant species tend to differ in their reaction to NP exposure, with some showing positive effects of NP augmentation while many others showing detrimental effects. Seed germination studies have shown to be less effective in gauging phytotoxicity, while root elongation studies have shown more promise. Given the large increase in nanomaterial applications in consumer products, agriculture and energy sectors, it is critical to understand their role in the environment and their effects on plant life. A closer look at nanomaterial-driven ecotoxicity is needed. Ecosystem-level studies are required to indicate how these nanomaterials transfer at the critical trophic levels affecting human health and biota.


Environmental Pollution | 2008

Promising role of plant hormones in translocation of lead in Sesbania drummondii shoots

Mohd Israr; Shivendra V. Sahi

Lead (Pb) accumulation in Sesbania drummondii shoots was enhanced by 654 and 415% in the presence of 100 microM IAA and 100 microM NAA, respectively, compared to control plants (Pb alone). However, when IAA or NAA was added along with EDTA, Pb accumulation further increased in shoots by 1349% and 1252%, respectively. Scanning electron microscopic observations revealed that Pb particles in both leaf and stem of Pb+EDTA+IAA and Pb+EDTA+NAA treated plants were concentrated in the region of vascular bundles. In root tissue, Pb particles were present between epidermis to stele region. Plant growth in both treatments (Pb+100 microM IAA and Pb+100 microM NAA) was comparable to control plants; however, it was significantly inhibited in the treatments containing Pb+EDTA and EDTA at concentrations of 10 microM of IAA or NAA. Moreover, the photosynthetic efficiency and strength of the treated plants were not affected in the presence of IAA or NAA and EDTA.


Planta | 2007

Identification of lead-regulated genes by suppression subtractive hybridization in the heavy metal accumulator Sesbania drummondii

A. K. Srivastava; Perumal Venkatachalam; Kashchandra G. Raghothama; Shivendra V. Sahi

Heavy metal contamination of soils is of widespread occurrence as a result of human, agricultural and industrial activities. Among heavy metals, lead is a potential pollutant that readily accumulates in soils and sediments. Although lead is not an essential element for plants, it gets easily absorbed and accumulated in Sesbania drummondii, which exhibits a significant level of tolerance to lead. The response of a metal tolerant plant to heavy metal stress involves a number of biochemical and physiological pathways. To investigate the overall molecular response of a metal-tolerant plant to lead exposure, suppression subtractive hybridization (SSH) was used to construct a cDNA library enriched in lead induced mRNA transcripts from lead-tolerant Sesbania. Screening the library by reverse Northern analysis revealed that between 20 and 25% of clones selected from the library were differentially regulated in lead treated plants. After differential screening, we isolated several differentially expressed cDNA clones, including a type 2 metallothionein (MT) gene which is involved in detoxification and homeostasis and shown to be differentially regulated in lead treated plants. The data from the reverse Northern analysis was further confirmed with conventional Northern analysis of a select group of genes including MT, ACC synthase/oxidase, cold-, water stress-, and other abiotic stress-induced genes, which are up-regulated rapidly in response to lead treatment. The mRNA levels of MT increased substantially after lead treatment indicating a potential role for it under lead stress in Sesbania. The present results show that SSH can serve as an effective tool for isolating genes induced in response to lead heavy metal tolerance in Sesbania. A better understanding of lead induced gene expression in Sesbania should help select candidates associated with remediation of heavy metal toxicity. The possible link between this result and the heavy-metal response of plants is discussed.

Collaboration


Dive into the Shivendra V. Sahi's collaboration.

Top Co-Authors

Avatar

Nilesh C. Sharma

Western Kentucky University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohd Israr

Western Kentucky University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel L. Starnes

Western Kentucky University

View shared research outputs
Top Co-Authors

Avatar

Priya Padmanabhan

Western Kentucky University

View shared research outputs
Top Co-Authors

Avatar

Rupali Datta

Michigan Technological University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge