Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shivkumar Sabesan is active.

Publication


Featured researches published by Shivkumar Sabesan.


International Journal of Neural Systems | 2009

CONTROL OF SYNCHRONIZATION OF BRAIN DYNAMICS LEADS TO CONTROL OF EPILEPTIC SEIZURES IN RODENTS

Levi B. Good; Shivkumar Sabesan; Steven T. Marsh; Kostas Tsakalis; David M. Treiman; Leonidas D. Iasemidis

We have designed and implemented an automated, just-in-time stimulation, seizure control method using a seizure prediction method from nonlinear dynamics coupled with deep brain stimulation in the centromedial thalamic nuclei in epileptic rats. A comparison to periodic stimulation, with identical stimulation parameters, was also performed. The two schemes were compared in terms of their efficacy in control of seizures, as well as their effect on synchronization of brain dynamics. The automated just-in-time (JIT) stimulation showed reduction of seizure frequency and duration in 5 of the 6 rats, with significant reduction of seizure frequency (>50%) in 33% of the rats. This constituted a significant improvement over the efficacy of the periodic control scheme in the same animals. Actually, periodic stimulation showed an increase of seizure frequency in 50% of the rats, reduction of seizure frequency in 3 rats and significant reduction in 1 rat. Importantly, successful seizure control was highly correlated with desynchronization of brain dynamics. This study provides initial evidence for the use of closed-loop feedback control systems in epileptic seizures combining methods from seizure prediction and deep brain stimulation.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2009

Information Flow and Application to Epileptogenic Focus Localization From Intracranial EEG

Shivkumar Sabesan; Levi B. Good; Konstantinos Tsakalis; Andreas Spanias; David M. Treiman; Leon D. Iasemidis

Transfer entropy (TE) is a recently proposed measure of the information flow between coupled linear or nonlinear systems. In this study, we suggest improvements in the selection of parameters for the estimation of TE that significantly enhance its accuracy and robustness in identifying the direction and the level of information flow between observed data series generated by coupled complex systems. We show the application of the improved TE method to long (in the order of days; approximately a total of 600 h across all patients), continuous, intracranial electroencephalograms (EEG) recorded in two different medical centers from four patients with focal temporal lobe epilepsy (TLE) for localization of their foci. All patients underwent ablative surgery of their clinically assessed foci. Based on a surrogate statistical analysis of the TE results, it is shown that the identified potential focal sites through the suggested analysis were in agreement with the clinically assessed sites of the epileptogenic focus in all patients analyzed. It is noteworthy that the analysis was conducted on the available whole-duration multielectrode EEG, that is, without any subjective prior selection of EEG segments or electrodes for analysis. The above, in conjunction with the use of surrogate data, make the results of this analysis robust. These findings suggest a critical role TE may play in epilepsy research in general, and as a tool for robust localization of the epileptogenic focus/foci in patients with focal epilepsy in particular.


Annals of Biomedical Engineering | 2009

Homeostasis of Brain Dynamics in Epilepsy: A Feedback Control Systems Perspective of Seizures

Niranjan Chakravarthy; Kostas Tsakalis; Shivkumar Sabesan; Leon D. Iasemidis

In an effort to understand basic functional mechanisms that can produce epileptic seizures, some key features are introduced in coupled lumped-parameter neural population models that produce “seizure”-like events and dynamics similar to the ones during the route of the epileptic brain towards seizures. In these models, modified from existing ones in the literature, internal feedback mechanisms are incorporated to maintain the normal low level of synchronous behavior in the presence of coupling variations. While the internal feedback is developed using basic feedback systems principles, it is also functionally equivalent to actual neurophysiological mechanisms such as homeostasis that act to maintain normal activity in neural systems that are subject to extrinsic and intrinsic perturbations. Here it is hypothesized that a plausible cause of seizures is a pathology in the internal feedback action; normal internal feedback quickly regulates an abnormally high coupling between the neural populations, whereas pathological internal feedback can lead to “seizure”-like high amplitude oscillations. Several external seizure-control paradigms, that act to achieve the operational objective of maintaining normal levels of synchronous behavior, are also developed and tested in this paper. In particular, closed-loop “modulating” control with predefined stimuli, and closed-loop feedback decoupling control are considered. Among these, feedback decoupling control is the consistently successful and robust seizure-control strategy. The proposed model and remedies are consistent with a variety of recent observations in the human and animal epileptic brain, and with theories from nonlinear systems, adaptive systems, optimization, and neurophysiology. The results from the analysis of these models have two key implications, namely, developing a basic theory for epilepsy and other brain disorders, and the development of a robust seizure-control device through electrical stimulation and/or drug intervention modalities.


Journal of Combinatorial Optimization | 2009

Controlling epileptic seizures in a neural mass model

Niranjan Chakravarthy; Shivkumar Sabesan; Kostas Tsakalis; Leonidas D. Iasemidis

In an effort to understand basic functional mechanisms that can produce epileptic seizures, we introduce some key features in a model of coupled neural populations that enable the generation of seizure-like events and similar dynamics with the ones observed during the route of the epileptic brain towards real seizures. In this model, modified from David and Friston’s neural mass model, an internal feedback mechanism is incorporated to maintain synchronous behavior within normal levels despite elevated coupling. Normal internal feedback quickly regulates an abnormally high coupling between the neural populations, whereas pathological internal feedback can lead to hypersynchronization and the appearance of seizure-like high amplitude oscillations. Feedback decoupling is introduced as a robust seizure control strategy. An external feedback decoupling controller is introduced to maintain normal synchronous behavior. The results from the analysis in this model have an interesting physical interpretation and specific implications for the treatment of epileptic seizures. The proposed model and control scheme are consistent with a variety of recent observations in the human and animal epileptic brain, and with theories from nonlinear systems, adaptive systems, optimization, and neurophysiology.


Journal of Combinatorial Optimization | 2009

Measuring resetting of brain dynamics at epileptic seizures: application of global optimization and spatial synchronization techniques

Shivkumar Sabesan; Niranjan Chakravarthy; Kostas Tsakalis; Panos M. Pardalos; Leonidas D. Iasemidis

Epileptic seizures are manifestations of intermittent spatiotemporal transitions of the human brain from chaos to order. Measures of chaos, namely maximum Lyapunov exponents (STLmax), from dynamical analysis of the electroencephalograms (EEGs) at critical sites of the epileptic brain, progressively converge (diverge) before (after) epileptic seizures, a phenomenon that has been called dynamical synchronization (desynchronization). This dynamical synchronization/desynchronization has already constituted the basis for the design and development of systems for long-term (tens of minutes), on-line, prospective prediction of epileptic seizures. Also, the criterion for the changes in the time constants of the observed synchronization/desynchronization at seizure points has been used to show resetting of the epileptic brain in patients with temporal lobe epilepsy (TLE), a phenomenon that implicates a possible homeostatic role for the seizures themselves to restore normal brain activity. In this paper, we introduce a new criterion to measure this resetting that utilizes changes in the level of observed synchronization/desynchronization. We compare this criterion’s sensitivity of resetting with the old one based on the time constants of the observed synchronization/desynchronization. Next, we test the robustness of the resetting phenomena in terms of the utilized measures of EEG dynamics by a comparative study involving STLmax, a measure of phase (φmax) and a measure of energy (E) using both criteria (i.e. the level and time constants of the observed synchronization/desynchronization). The measures are estimated from intracranial electroencephalographic (iEEG) recordings with subdural and depth electrodes from two patients with focal temporal lobe epilepsy and a total of 43 seizures. Techniques from optimization theory, in particular quadratic bivalent programming, are applied to optimize the performance of the three measures in detecting preictal entrainment. It is shown that using either of the two resetting criteria, and for all three dynamical measures, dynamical resetting at seizures occurs with a significantly higher probability (α=0.05) than resetting at randomly selected non-seizure points in days of EEG recordings per patient. It is also shown that dynamical resetting at seizures using time constants of STLmax synchronization/desynchronization occurs with a higher probability than using the other synchronization measures, whereas dynamical resetting at seizures using the level of synchronization/desynchronization criterion is detected with similar probability using any of the three measures of synchronization. These findings show the robustness of seizure resetting with respect to measures of EEG dynamics and criteria of resetting utilized, and the critical role it might play in further elucidation of ictogenesis, as well as in the development of novel treatments for epilepsy.


Pramana | 2005

Dynamical hysteresis and spatial synchronization in coupled non-identical chaotic oscillators

Awadhesh Prasad; Leon D. Iasemidis; Shivkumar Sabesan; Kostas Tsakalis

We identify a novel phenomenon in distinct (namely non-identical) coupled chaotic systems, which we term dynamical hysteresis. This behavior, which appears to be universal, is defined in terms of the system dynamics (quantified for example through the Lyapunov exponents), and arises from the presence of at least two coexisting stable attractors over a finite range of coupling, with a change of stability outside this range. Further characterization via mutual synchronization indices reveals that one attractor corresponds to spatially synchronized oscillators, while the other corresponds to desynchronized oscillators. Dynamical hysteresis may thus help to understand critical aspects of the dynamical behavior of complex biological systems, e.g. seizures in the epileptic brain can be viewed as transitions between different dynamical phases caused by time dependence in the brain’s internal coupling.


Archive | 2007

Information Flow in Coupled Nonlinear Systems: Application to the Epileptic Human Brain

Shivkumar Sabesan; K. Narayanan; Awadhesh Prasad; Leonidas D. Iasemidis; Andreas Spanias; Konstantinos Tsakalis

A recently proposed measure, namely Transfer Entropy (TE), is used to estimate the direction of information flow between coupled linear and nonlinear systems. In this study, we suggest improvements in the selection of parameters for the estimation of TE that significantly enhance its accuracy and robustness in identifying the direction of information flow and quantifying the level of interaction between observed data series from coupled systems. We demonstrate the potential usefulness of the improved method through simulation examples with coupled nonlinear chaotic systems. The statistical significance of the results is shown through the use of surrogate data. The improved TE method is then used for the study of information flow in the epileptic human brain. We illustrate the application of TE to electroencephalographic (EEG) signals for the study of localization of the epileptogenic focus and the dynamics of its interaction with other brain sites in two patients with Temporal Lobe Epilepsy (TLE).


international conference of the ieee engineering in medicine and biology society | 2004

Brain dynamical disentrainment by anti-epileptic drugs in rat and human status epilepticus

Levi B. Good; Shivkumar Sabesan; Leonidas D. Iasemidis; Konstantinos Tsakalis; David M. Treiman

We utilize a measure of brain dynamics, namely the short-term largest Lyapunov exponent (STL/sub max/) to evaluate the efficacy of treatment in epileptic animals and humans with known antiepileptic drugs (AED) like diazepam and phenobarbital during status epilepticus (SE). This measure is estimated from analysis of electroencephalographic (EEG) recordings at multiple brain locations in both an SE patient and a cobalt/homocysteine thiolactone SE-induced animal. Techniques from optimization theory and statistics are applied to select optimal sets of brain sites, whose dynamics are then measured over time to study their entrainment/disentrainment. Results from such analysis indicate that the observed abnormal spatio-temporal dynamical entrainment in SE is reversed by AED administration (resetting of brain dynamics). These results may provide a potential use of nonlinear dynamical measures in the evaluation of the efficacy of AEDs and the development of new treatment strategies in epilepsy.


Archive | 2008

Global optimization and spatial synchronization changes prior to epileptic seizures

Shivkumar Sabesan; Levi B. Good; Niranjan Chakravarthy; Kostas Tsakalis; Panos M. Pardalos; Leon D. Iasemidis

Epileptic seizures are manifestations of intermittent spatiotemporal transitions of the human brain from chaos to order. In this paper, a comparative study involving a measure of chaos, in particular the short-term Lyapunov exponent (STLmax), a measure of phase (ϕmax) and a measure of energy (E) is carried out to detect the dynamical spatial synchronization changes that precede temporal lobe epileptic seizures. The measures are estimated from intracranial electroencephalographic (EEG) recordings with sub-dural and in-depth electrodes from two patients with focal temporal lobe epilepsy and a total of 43 seizures. Techniques from optimization theory, in particular quadratic bivalent programming, are applied to optimize the performance of the three measures in detecting preictal synchronization. It is shown that spatial synchronization, as measured by the convergence of STLmax, ϕmax and E of critical sites selected by optimization versus randomly selected sites leads to long-term seizure predictability. Finally, it is shown that the seizure predictability period using STlmax is longer than that of the phase or energy synchronization measures. This points out the advantages of using synchronization of the STlmax measure in conjunction with optimization for long-term prediction of epileptic seizures.


Archive | 2009

Brain Dynamics and Modeling in Epilepsy: Prediction and Control Studies

Leonidas D. Iasemidis; Shivkumar Sabesan; Niranjan Chakravarthy; Awadhesh Prasad; Kostas Tsakalis

Epilepsy is a major neurological disorder characterized by intermittent paroxysmal neuronal electrical activity, that may remain localized or spread, and severely disrupt the brain’s normal operation. Epileptic seizures are typical manifestations of such pathology. It is in the last 20 years that prediction and control of epileptic seizures has been the subject of intensive interdisciplinary research. In this communication, we investigate epilepsy from the point of view of pathology of the dynamics of the electrical activity of the brain. In this framework, we revisit two critical aspects of the dynamics of epileptic seizures – the seizure predictability and seizure resetting – that may prove to be the keys for improved seizure prediction and seizure control schemes. We use human EEG data and the concepts of spatial synchronization of chaos, phase and energy to first show that seizures could be predictable in the order of tens of minutes prior to their onset. We then present additional statistical evidence that the pathology of the brain dynamics prior to seizures is reset mostly upon seizures’ occurrence, a phenomenon we have called seizure resetting. Finally, using a biologically-plausible neural population mathematical model that can exhibit seizure-like behavior, we provide evidence for the effectiveness of a recently devised seizure control scheme we have called “feedback decoupling”. This scheme also provides an interesting dynamical model for ictogenesis (generation of seizures).

Collaboration


Dive into the Shivkumar Sabesan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Treiman

Barrow Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Levi B. Good

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

K. Narayanan

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge