Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shixian Deng is active.

Publication


Featured researches published by Shixian Deng.


Nature Medicine | 2011

The Ngal reporter mouse detects the response of the kidney to injury in real time

Neal Paragas; Andong Qiu; Qing-Yin Zhang; Benjamin Samstein; Shixian Deng; Kai M. Schmidt-Ott; Melanie Viltard; Wenqiang Yu; Catherine S. Forster; Gangli Gong; Yidong Liu; Ritwij Kulkarni; Kiyoshi Mori; Avtandil Kalandadze; Adam J. Ratner; Prasad Devarajan; Donald W. Landry; Chyuan-Sheng Lin; Jonathan Barasch

Many proteins have been proposed to act as surrogate markers of organ damage, yet for many candidates the essential biomarker characteristics that link the protein to the injured organ have not yet been described. We generated an Ngal reporter mouse by inserting a double-fusion reporter gene encoding luciferase-2 and mCherry (Luc2-mC) into the Ngal (Lcn2) locus. The Ngal-Luc2-mC reporter accurately recapitulated the endogenous message and illuminated injuries in vivo in real time. In the kidney, Ngal-Luc2-mC imaging showed a sensitive, rapid, dose-dependent, reversible, and organ- and cell-specific relationship with tubular stress, which correlated with the level of urinary Ngal (uNgal). Unexpectedly, specific cells of the distal nephron were the source of uNgal. Cells isolated from Ngal-Luc2-mC mice also revealed both the onset and the resolution of the injury, and the actions of NF-κB inhibitors and antibiotics during infection. Thus, imaging of Ngal-Luc2-mC mice and cells identified injurious and reparative agents that affect kidney damage.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Remodeling of ryanodine receptor complex causes “leaky” channels: A molecular mechanism for decreased exercise capacity

Andrew M. Bellinger; Steven Reiken; Miroslav Dura; Peter W. Murphy; Shixian Deng; Donald W. Landry; David C. Nieman; Stephan E. Lehnart; Mahendranauth Samaru; Alain Lacampagne; Andrew R. Marks

During exercise, defects in calcium (Ca2+) release have been proposed to impair muscle function. Here, we show that during exercise in mice and humans, the major Ca2+ release channel required for excitation–contraction coupling (ECC) in skeletal muscle, the ryanodine receptor (RyR1), is progressively PKA-hyperphosphorylated, S-nitrosylated, and depleted of the phosphodiesterase PDE4D3 and the RyR1 stabilizing subunit calstabin1 (FKBP12), resulting in “leaky” channels that cause decreased exercise tolerance in mice. Mice with skeletal muscle-specific calstabin1 deletion or PDE4D deficiency exhibited significantly impaired exercise capacity. A small molecule (S107) that prevents depletion of calstabin1 from the RyR1 complex improved force generation and exercise capacity, reduced Ca2+-dependent neutral protease calpain activity and plasma creatine kinase levels. Taken together, these data suggest a possible mechanism by which Ca2+ leak via calstabin1-depleted RyR1 channels leads to defective Ca2+ signaling, muscle damage, and impaired exercise capacity.


Nature Chemical Biology | 2010

Iron Traffics in Circulation Bound to a Siderocalin (Ngal)-Catechol Complex

Guanhu Bao; Matthew S Clifton; Trisha M. Hoette; Kiyoshi Mori; Shixian Deng; Andong Qiu; Melanie Viltard; David Y. Williams; Neal Paragas; Thomas Leete; Ritwij Kulkarni; Xiangpo Li; Belinda T. Lee; Avtandil Kalandadze; Adam J. Ratner; Juan C. Pizarro; Kai M. Schmidt-Ott; Donald W. Landry; Kenneth N. Raymond; Roland K. Strong; Jonathan Barasch

The lipocalins are secreted proteins that bind small organic molecules. Scn-Ngal [known as Neutrophil Gelatinase Associated Lipocalin, Siderocalin, Lipocalin 2] sequesters bacterial iron chelators, called siderophores, and consequently blocks bacterial growth. However, Scn-Ngal is also prominently expressed in aseptic diseases, implying that it binds additional ligands and serves additional functions. Using chemical screens, crystallography, and fluorescence methods, we report that Scn-Ngal binds iron together with a small metabolic product called catechol. The formation of the complex blocked the reactivity of iron and permitted its transport once introduced into circulation in vivo. Scn-Ngal then recycled its iron in endosomes by a pH sensitive mechanism. Since catechols derive from bacterial and mammalian metabolism of dietary compounds, the Scn-Ngal:catechol:iron complex represents an unforeseen microbial-host interaction, which mimics Scn-Ngal:siderophore interactions, but instead traffics iron in aseptic tissues. These results identify an endogenous siderophore, which may link the disparate roles of Scn-Ngal in different diseases.


Journal of Biological Chemistry | 2006

Sitosterol-containing Lipoproteins Trigger Free Sterol-induced Caspase-independent Death in ACAT-competent Macrophages

Liping Bao; Yankun Li; Shixian Deng; Donald W. Landry; Ira Tabas

Sitosterolemia is a disease characterized by very high levels of sitosterol and other plant sterols and premature atherothrombotic vascular disease. One theory holds that plant sterols can directly promote atherosclerosis, but the mechanism is not known. Unesterified, or “free,” cholesterol (FC) is a potent inducer of macrophage death, which causes plaque necrosis, a precursor to atherothrombosis. FC-induced macrophage death, however, requires dysfunction of the sterol esterifying enzyme acyl-coenzyme A-cholesterol acyltransferase (ACAT), which likely occurs slowly during lesion progression. In contrast, plant sterols are relatively poorly esterified by ACAT, and so they may cause macrophage death and plaque necrosis in an accelerated manner. In support of this hypothesis, we show here that macrophages incubated with sitosterol-containing lipoproteins accumulate free sterols and undergo death in the absence of an ACAT inhibitor. As with FC loading, sitosterol-induced macrophage death requires sterol trafficking to the endoplasmic reticulum, and sitosterol-enriched endoplasmic reticulum membranes show evidence of membrane protein dysfunction. However, whereas FC induces caspase-dependent apoptosis through activation of the unfolded protein response and JNK, sitosterol-induced death is caspase-independent and involves neither the unfolded protein response nor JNK. Rather, cell death shows signs of necroptosis and autophagy and is suppressed by inhibitors of both processes. These data establish two new concepts. First, a relatively subtle change in sterol structure fundamentally alters the type of death program triggered in macrophages. Understanding the basis of this alteration should provide new insights into the molecular basis of death pathway signaling. Second, sitosterol-induced macrophage death does not require ACAT dysfunction and so may occur in an accelerated fashion. Pending future in vivo studies, this concept may provide at least one mechanism for accelerated plaque necrosis and atherothrombotic disease in patients with sitosterolemia.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Locations of the β1 transmembrane helices in the BK potassium channel

Guoxia Liu; Sergey I. Zakharov; Lin Yang; Roland S. Wu; Shixian Deng; Donald W. Landry; Arthur Karlin; Steven O. Marx

BK channels are composed of α-subunits, which form a voltage- and Ca2+-gated potassium channel, and of modulatory β-subunits. The β1-subunit is expressed in smooth muscle, where it renders the BK channel sensitive to [Ca2+]i in a voltage range near the smooth-muscle resting potential and slows activation and deactivation. BK channel acts thereby as a damped feedback regulator of voltage-dependent Ca2+ channels and of smooth muscle tone. We explored the contacts between α and β1 by determining the extent of endogenous disulfide bond formation between cysteines substituted just extracellular to the two β1 transmembrane (TM) helices, TM1 and TM2, and to the seven α TM helices, consisting of S1–S6, conserved in all voltage-dependent potassium channels, and the unique S0 helix, which we previously concluded was partly surrounded by S1–S4. We now find that the extracellular ends of β1 TM2 and α S0 are in contact and that β1 TM1 is close to both S1 and S2. The extracellular ends of TM1 and TM2 are not close to S3–S6. In almost all cases, cross-linking of TM2 to S0 or of TM1 to S1 or S2 shifted the conductance–voltage curves toward more positive potentials, slowed activation, and speeded deactivation, and in general favored the closed state. TM1 and TM2 are in position to contribute, in concert with the extracellular loop and the intracellular N- and C-terminal tails of β1, to the modulation of BK channel function.


The Journal of General Physiology | 2008

Position and Role of the BK Channel α Subunit S0 Helix Inferred from Disulfide Crosslinking

Guoxia Liu; Sergey I. Zakharov; Lin Yang; Shixian Deng; Donald W. Landry; Arthur Karlin; Steven O. Marx

The position and role of the unique N-terminal transmembrane (TM) helix, S0, in large-conductance, voltage- and calcium-activated potassium (BK) channels are undetermined. From the extents of intra-subunit, endogenous disulfide bond formation between cysteines substituted for the residues just outside the membrane domain, we infer that the extracellular flank of S0 is surrounded on three sides by the extracellular flanks of TM helices S1 and S2 and the four-residue extracellular loop between S3 and S4. Eight different double cysteine–substituted alphas, each with one cysteine in the S0 flank and one in the S3–S4 loop, were at least 90% disulfide cross-linked. Two of these alphas formed channels in which 90% cross-linking had no effect on the V50 or on the activation and deactivation rate constants. This implies that the extracellular ends of S0, S3, and S4 are close in the resting state and move in concert during voltage sensor activation. The association of S0 with the gating charge bearing S3 and S4 could contribute to the considerably larger electrostatic energy required to activate the BK channel compared with typical voltage-gated potassium channels with six TM helices.


European Journal of Medicinal Chemistry | 2013

Synthesis of Quinoline Derivatives: Discovery of a Potent and Selective Phosphodiesterase 5 Inhibitor for the Treatment of Alzheimer's disease

Jole Fiorito; Faisal Saeed; Hong Zhang; Agnieszka Staniszewski; Yan Feng; Yitshak Francis; Sudha Rao; Devarshi M. Thakkar; Shixian Deng; Donald W. Landry; Ottavio Arancio

Phosphodiesterase type 5 (PDE5) mediates the degradation of cGMP in a variety of tissues including brain. Recent studies have demonstrated the importance of the nitric oxide/cGMP/cAMP-responsive element-binding protein (CREB) pathway to the process of learning and memory. Thus, PDE5 inhibitors (PDE5Is) are thought to be promising new therapeutic agents for the treatment of Alzheimers disease (AD), a neurodegenerative disorder characterized by memory loss. To explore this possibility, a series of quinoline derivatives were synthesized and evaluated. We found that compound 7a selectively inhibits PDE5 with an IC(50) of 0.27 nM and readily crosses the blood brain barrier. In an in vivo mouse model of AD, compound 7a rescues synaptic and memory defects. Quinoline-based, CNS-permeant PDE5Is have potential for AD therapeutic development.


The Journal of Neuroscience | 2009

Location of the β4 Transmembrane Helices in the BK Potassium Channel

Roland S. Wu; Neelesh Chudasama; Sergey I. Zakharov; Darshan Doshi; Howard K. Motoike; Guoxia Liu; Yongneng Yao; Xiaowei Niu; Shixian Deng; Donald W. Landry; Arthur Karlin; Steven O. Marx

Large-conductance, voltage- and Ca2+-gated potassium (BK) channels control excitability in a number of cell types. BK channels are composed of α subunits, which contain the voltage-sensor domains and the Ca2+- sensor domains and form the pore, and often one of four types of β subunits, which modulate the channel in a cell-specific manner. β4 is expressed in neurons throughout the brain. Deletion of β4 in mice causes temporal lobe epilepsy. Compared with channels composed of α alone, channels composed of α and β4 activate and deactivate more slowly. We inferred the locations of the two β4 transmembrane (TM) helices TM1 and TM2 relative to the seven α TM helices, S0–S6, from the extent of disulfide bond formation between cysteines substituted in the extracellular flanks of these TM helices. We found that β4 TM2 is close to α S0 and that β4 TM1 is close to both α S1 and S2. At least at their extracellular ends, TM1 and TM2 are not close to S3–S6. In six of eight of the most highly crosslinked cysteine pairs, four crosslinks from TM2 to S0 and one each from TM1 to S1 and S2 had small effects on the V50 and on the rates of activation and deactivation. That disulfide crosslinking caused only small functional perturbations is consistent with the proximity of the extracellular ends of TM2 to S0 and of TM1 to S1 and to S2, in both the open and closed states.


Journal of Computational Chemistry | 2005

First-principle studies of intermolecular and intramolecular catalysis of protonated cocaine

Chang-Guo Zhan; Shixian Deng; Jaime G. Skiba; Beth A. Hayes; Sarah M. Tschampel; George C. Shields; Donald W. Landry

We have performed a series of first‐principles electronic structure calculations to examine the reaction pathways and the corresponding free energy barriers for the ester hydrolysis of protonated cocaine in its chair and boat conformations. The calculated free energy barriers for the benzoyl ester hydrolysis of protonated chair cocaine are close to the corresponding barriers calculated for the benzoyl ester hydrolysis of neutral cocaine. However, the free energy barrier calculated for the methyl ester hydrolysis of protonated cocaine in its chair conformation is significantly lower than for the methyl ester hydrolysis of neutral cocaine and for the dominant pathway of the benzoyl ester hydrolysis of protonated cocaine. The significant decrease of the free energy barrier, ∼4 kcal/mol, is attributed to the intramolecular acid catalysis of the methyl ester hydrolysis of protonated cocaine, because the transition state structure is stabilized by the strong hydrogen bond between the carbonyl oxygen of the methyl ester moiety and the protonated tropane N. The relative magnitudes of the free energy barriers calculated for different pathways of the ester hydrolysis of protonated chair cocaine are consistent with the experimental kinetic data for cocaine hydrolysis under physiologic conditions. Similar intramolecular acid catalysis also occurs for the benzoyl ester hydrolysis of (protonated) boat cocaine in the physiologic condition, although the contribution of the intramolecular hydrogen bonding to transition state stabilization is negligible. Nonetheless, the predictability of the intramolecular hydrogen bonding could be useful in generating antibody‐based catalysts that recruit cocaine to the boat conformation and an analog that elicited antibodies to approximate the protonated tropane N and the benzoyl O more closely than the natural boat conformer might increase the contribution from hydrogen bonding. Such a stable analog of the transition state for intramolecular catalysis of cocaine benzoyl‐ester hydrolysis was synthesized and used to successfully elicit a number of anticocaine catalytic antibodies.


Blood | 2017

Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kδ and CK1ε in hematological malignancies

Changchun Deng; Mark Lipstein; Luigi Scotto; Xavier O. Jirau Serrano; Michael Mangone; Shirong Li; Jeremie Vendome; Yun Hao; Xiaoming Xu; Shixian Deng; Ronald Realubit; Nicholas P. Tatonetti; Charles Karan; Suzanne Lentzsch; David A. Fruman; Barry Honig; Donald W. Landry; Owen A. O’Connor

Phosphoinositide 3-kinase (PI3K) and the proteasome pathway are both involved in activating the mechanistic target of rapamycin (mTOR). Because mTOR signaling is required for initiation of messenger RNA translation, we hypothesized that cotargeting the PI3K and proteasome pathways might synergistically inhibit translation of c-Myc. We found that a novel PI3K δ isoform inhibitor TGR-1202, but not the approved PI3Kδ inhibitor idelalisib, was highly synergistic with the proteasome inhibitor carfilzomib in lymphoma, leukemia, and myeloma cell lines and primary lymphoma and leukemia cells. TGR-1202 and carfilzomib (TC) synergistically inhibited phosphorylation of the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), leading to suppression of c-Myc translation and silencing of c-Myc-dependent transcription. The synergistic cytotoxicity of TC was rescued by overexpression of eIF4E or c-Myc. TGR-1202, but not other PI3Kδ inhibitors, inhibited casein kinase-1 ε (CK1ε). Targeting CK1ε using a selective chemical inhibitor or short hairpin RNA complements the effects of idelalisib, as a single agent or in combination with carfilzomib, in repressing phosphorylation of 4E-BP1 and the protein level of c-Myc. These results suggest that TGR-1202 is a dual PI3Kδ/CK1ε inhibitor, which may in part explain the clinical activity of TGR-1202 in aggressive lymphoma not found with idelalisib. Targeting CK1ε should become an integral part of therapeutic strategies targeting translation of oncogenes such as c-Myc.

Collaboration


Dive into the Shixian Deng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge