Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shixuan Yang is active.

Publication


Featured researches published by Shixuan Yang.


Nature Nanotechnology | 2014

Multifunctional wearable devices for diagnosis and therapy of movement disorders

Donghee Son; Jongha Lee; Shutao Qiao; Roozbeh Ghaffari; Jaemin Kim; Ji Eun Lee; Changyeong Song; Seok Joo Kim; Dong Jun Lee; Samuel Woojoo Jun; Shixuan Yang; Min-joon Park; Jiho Shin; Kyungsik Do; Min-Cheol Lee; Kwanghun Kang; Cheol Seong Hwang; Nanshu Lu; Taeghwan Hyeon; Dae-Hyeong Kim

Wearable systems that monitor muscle activity, store data and deliver feedback therapy are the next frontier in personalized medicine and healthcare. However, technical challenges, such as the fabrication of high-performance, energy-efficient sensors and memory modules that are in intimate mechanical contact with soft tissues, in conjunction with controlled delivery of therapeutic agents, limit the wide-scale adoption of such systems. Here, we describe materials, mechanics and designs for multifunctional, wearable-on-the-skin systems that address these challenges via monolithic integration of nanomembranes fabricated with a top-down approach, nanoparticles assembled by bottom-up methods, and stretchable electronics on a tissue-like polymeric substrate. Representative examples of such systems include physiological sensors, non-volatile memory and drug-release actuators. Quantitative analyses of the electronics, mechanics, heat-transfer and drug-diffusion characteristics validate the operation of individual components, thereby enabling system-level multifunctionalities.


ACS Nano | 2013

High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems.

Hsiao Yu Chang; Shixuan Yang; Jongho Lee; Li Tao; Wan Sik Hwang; Debdeep Jena; Nanshu Lu; Deji Akinwande

While there has been increasing studies of MoS2 and other two-dimensional (2D) semiconducting dichalcogenides on hard conventional substrates, experimental or analytical studies on flexible substrates has been very limited so far, even though these 2D crystals are understood to have greater prospects for flexible smart systems. In this article, we report detailed studies of MoS2 transistors on industrial plastic sheets. Transistor characteristics afford more than 100x improvement in the ON/OFF current ratio and 4x enhancement in mobility compared to previous flexible MoS2 devices. Mechanical studies reveal robust electronic properties down to a bending radius of 1 mm which is comparable to previous reports for flexible graphene transistors. Experimental investigation identifies that crack formation in the dielectric is the responsible failure mechanism demonstrating that the mechanical properties of the dielectric layer is critical for realizing flexible electronics that can accommodate high strain. Our uniaxial tensile tests have revealed that atomic-layer-deposited HfO2 and Al2O3 films have very similar crack onset strain. However, crack propagation is slower in HfO2 dielectric compared to Al2O3 dielectric, suggesting a subcritical fracture mechanism in the thin oxide films. Rigorous mechanics modeling provides guidance for achieving flexible MoS2 transistors that are reliable at sub-mm bending radius.


Nano Letters | 2015

Flexible Black Phosphorus Ambipolar Transistors, Circuits and AM Demodulator

Weinan Zhu; Maruthi N. Yogeesh; Shixuan Yang; Sandra H. Aldave; Joon Seok Kim; Sushant Sonde; Li Tao; Nanshu Lu; Deji Akinwande

High-mobility two-dimensional (2D) semiconductors are desirable for high-performance mechanically flexible nanoelectronics. In this work, we report the first flexible black phosphorus (BP) field-effect transistors (FETs) with electron and hole mobilities superior to what has been previously achieved with other more studied flexible layered semiconducting transistors such as MoS2 and WSe2. Encapsulated bottom-gated BP ambipolar FETs on flexible polyimide afforded maximum carrier mobility of about 310 cm(2)/V·s with field-effect current modulation exceeding 3 orders of magnitude. The device ambipolar functionality and high-mobility were employed to realize essential circuits of electronic systems for flexible technology including ambipolar digital inverter, frequency doubler, and analog amplifiers featuring voltage gain higher than other reported layered semiconductor flexible amplifiers. In addition, we demonstrate the first flexible BP amplitude-modulated (AM) demodulator, an active stage useful for radio receivers, based on a single ambipolar BP transistor, which results in audible signals when connected to a loudspeaker or earphone. Moreover, the BP transistors feature mechanical robustness up to 2% uniaxial tensile strain and up to 5000 bending cycles.


ACS Nano | 2015

Bioresorbable Electronic Stent Integrated with Therapeutic Nanoparticles for Endovascular Diseases

Donghee Son; Jongha Lee; Dong Jun Lee; Roozbeh Ghaffari; Sumin Yun; Seok Joo Kim; Ji Eun Lee; Hye Rim Cho; Soonho Yoon; Shixuan Yang; Seung-Hyun Lee; Shutao Qiao; Daishun Ling; Sanghun Shin; Jun Kyul Song; Jaemin Kim; Taeho Kim; Hakyong Lee; Jonghoon Kim; Min Soh; Nohyun Lee; Cheol Seong Hwang; Sangwook Nam; Nanshu Lu; Taeghwan Hyeon; Seung Hong Choi; Dae-Hyeong Kim

Implantable endovascular devices such as bare metal, drug eluting, and bioresorbable stents have transformed interventional care by providing continuous structural and mechanical support to many peripheral, neural, and coronary arteries affected by blockage. Although effective in achieving immediate restoration of blood flow, the long-term re-endothelialization and inflammation induced by mechanical stents are difficult to diagnose or treat. Here we present nanomaterial designs and integration strategies for the bioresorbable electronic stent with drug-infused functionalized nanoparticles to enable flow sensing, temperature monitoring, data storage, wireless power/data transmission, inflammation suppression, localized drug delivery, and hyperthermia therapy. In vivo and ex vivo animal experiments as well as in vitro cell studies demonstrate the previously unrecognized potential for bioresorbable electronic implants coupled with bioinert therapeutic nanoparticles in the endovascular system.


Advanced Materials | 2016

Large-Area Monolayer MoS2 for Flexible Low-Power RF Nanoelectronics in the GHz Regime.

Hsiao Yu Chang; Maruthi N. Yogeesh; Rudresh Ghosh; Amritesh Rai; Atresh Sanne; Shixuan Yang; Nanshu Lu; Sanjay K. Banerjee; Deji Akinwande

Flexible synthesized MoS2 transistors are advanced to perform at GHz speeds. An intrinsic cutoff frequency of 5.6 GHz is achieved and analog circuits are realized. Devices are mechanically robust for 10,000 bending cycles.


Science Translational Medicine | 2016

Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh

Jinkyung Park; Suji Choi; Ajit H. Janardhan; Se-Yeon Lee; Samarth Raut; João S. Soares; Kwangsoo Shin; Shixuan Yang; Chungkeun Lee; Ki-Woon Kang; Hye Rim Cho; Seok Joo Kim; Pilseon Seo; Wonji Hyun; Sungmook Jung; Hye-Jeong Lee; Nohyun Lee; Seung Hong Choi; Michael S. Sacks; Nanshu Lu; Mark E. Josephson; Taeghwan Hyeon; Dae-Hyeong Kim; Hye Jin Hwang

A mesh made of a conductive nanowire composite can be wrapped around the heart to improve hemodynamics in experimental heart failure in rodents. An electromechanical hug for the heart Heart failure can be treated by pacemakers to keep the beats in rhythm, but pacemakers apply electrical stimulation at specific points and do not provide comprehensive coverage of the entire organ. Park and colleagues therefore devised an electric mesh that wraps around the heart to deliver electrical impulses to the whole ventricular myocardium. The heart wrap was made from silver nanowires embedded in a rubber polymer that could conform to the unique three-dimensional anatomy of different hearts. In rats that had a heart attack, the mesh integrated structurally and electrically with the myocardium and exerted beneficial effects, including preserved diastolic relaxation, reduced wall stress, and improved cardiac contractile function. The mesh also terminated induced ventricular arrhythmia, acting as an epicardial defibrillator. Such epicardial meshes have been tested in clinical trials before and were effective in preventing ventricular remodeling but showed controversial results in long-term survival. The authors hope that their device, which is designed to integrate more faithfully with the heart’s structure and electrical conduction system, is more consistent in people. Heart failure remains a major public health concern with a 5-year mortality rate higher than that of most cancers. Myocardial disease in heart failure is frequently accompanied by impairment of the specialized electrical conduction system and myocardium. We introduce an epicardial mesh made of electrically conductive and mechanically elastic material, to resemble the innate cardiac tissue and confer cardiac conduction system function, to enable electromechanical cardioplasty. Our epicardium-like substrate mechanically integrated with the heart and acted as a structural element of cardiac chambers. The epicardial device was designed with elastic properties nearly identical to the epicardial tissue itself and was able to detect electrical signals reliably on the moving rat heart without impeding diastolic function 8 weeks after induced myocardial infarction. Synchronized electrical stimulation over the ventricles by the epicardial mesh with the high conductivity of 11,210 S/cm shortened total ventricular activation time, reduced inherent wall stress, and improved several measures of systolic function including increases of 51% in fractional shortening, ~90% in radial strain, and 42% in contractility. The epicardial mesh was also capable of delivering an electrical shock to terminate a ventricular tachyarrhythmia in rodents. Electromechanical cardioplasty using an epicardial mesh is a new pathway toward reconstruction of the cardiac tissue and its specialized functions.


Sensors | 2013

Gauge Factor and Stretchability of Silicon-on-Polymer Strain Gauges

Shixuan Yang; Nanshu Lu

Strain gauges are widely applied to measure mechanical deformation of structures and specimens. While metallic foil gauges usually have a gauge factor slightly over 2, single crystalline silicon demonstrates intrinsic gauge factors as high as 200. Although silicon is an intrinsically stiff and brittle material, flexible and even stretchable strain gauges have been achieved by integrating thin silicon strips on soft and deformable polymer substrates. To achieve a fundamental understanding of the large variance in gauge factor and stretchability of reported flexible/stretchable silicon-on-polymer strain gauges, finite element and analytically models are established to reveal the effects of the length of the silicon strip, and the thickness and modulus of the polymer substrate. Analytical results for two limiting cases, i.e., infinitely thick substrate and infinitely long strip, have found good agreement with FEM results. We have discovered that strains in silicon resistor can vary by orders of magnitude with different substrate materials whereas strip length or substrate thickness only affects the strain level mildly. While the average strain in silicon reflects the gauge factor, the maximum strain in silicon governs the stretchability of the system. The tradeoff between gauge factor and stretchability of silicon-on-polymer strain gauges has been proposed and discussed.


International Journal of Fracture | 2014

Stretchability of indium tin oxide (ITO) serpentine thin films supported by Kapton substrates

Shixuan Yang; Becky Su; Ghassan Bitar; Nanshu Lu

Indium tin oxide (ITO) has been widely used as the electrode material in touch-screen displays and solar cells attributing to its combined high electrical conductivity and optical transparency. Moving forward from wafer based electronics to flexible/stretchable electronics, brittle electronic materials like ITO are significantly hindering the deformability of the integrated systems. To minimize strains in inorganic materials when subjected to stretch, thin metallic and ceramic films can be patterned into serpentine shapes. Although metallic serpentines have received extensive studies, experimental investigations on ceramic serpentines have not been reported. We perform uniaxial tension tests on Kapton-supported ITO serpentine thin films with in situ electrical resistance measurements. It is found that the narrower serpentine ribbons are more stretchable than their wider counterparts. We propose a generic empirical equation to predict the stretchability using three dimensionless geometric parameters. Conclusions reached for Kapton-supported ITO serpentine films are generally applicable to gold, silicon, and other stiff serpentine films bonded to stiff polymer substrates such as Kapton and polyethylene terephthalate.


Journal of Applied Mechanics | 2016

Elasticity Solutions to Nonbuckling Serpentine Ribbons

Shixuan Yang; Shutao Qiao; Nanshu Lu

Nanshu Lu Center for Mechanics of Solids, Structures, and Materials, Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 210 E 24th Street, Austin, TX 78712; Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Austin, TX 78712; Texas Materials Institute, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, TX 78712 e-mail: [email protected] Elasticity Solutions to Nonbuckling Serpentine Ribbons


Micromachines | 2018

Stretchable Tattoo-Like Heater with On-Site Temperature Feedback Control

Andrew Stier; Eshan Halekote; Andrew E. Mark; Shutao Qiao; Shixuan Yang; Kenneth R. Diller; Nanshu Lu

Wearable tissue heaters can play many important roles in the medical field. They may be used for heat therapy, perioperative warming and controlled transdermal drug delivery, among other applications. State-of-the-art heaters are too bulky, rigid, or difficult to control to be able to maintain long-term wearability and safety. Recently, there has been progress in the development of stretchable heaters that may be attached directly to the skin surface, but they often use expensive materials or processes and take significant time to fabricate. Moreover, they lack continuously active, on-site, unobstructive temperature feedback control, which is critical for accommodating the dynamic temperatures required for most medical applications. We have developed, fabricated and tested a cost-effective, large area, ultra-thin and ultra-soft tattoo-like heater that has autonomous proportional-integral-derivative (PID) temperature control. The device comprises a stretchable aluminum heater and a stretchable gold resistance temperature detector (RTD) on a soft medical tape as fabricated using the cost and time effective “cut-and-paste” method. It can be noninvasively laminated onto human skin and can follow skin deformation during flexure without imposing any constraint. We demonstrate the device’s ability to maintain a target temperature typical of medical uses over extended durations of time and to accurately adjust to a new set point in process. The cost of the device is low enough to justify disposable use.

Collaboration


Dive into the Shixuan Yang's collaboration.

Top Co-Authors

Avatar

Nanshu Lu

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Shutao Qiao

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Deji Akinwande

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Dae-Hyeong Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Seok Joo Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Taeghwan Hyeon

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Becky Su

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Hsiao Yu Chang

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Li Tao

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Maruthi N. Yogeesh

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge