Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shiyao Shan is active.

Publication


Featured researches published by Shiyao Shan.


Journal of the American Chemical Society | 2014

Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium-Nickel Nanoalloys

Shiyao Shan; Valeri Petkov; Lefu Yang; Jin Luo; Pharrah Joseph; Dina Mayzel; Binay Prasai; Lingyan Wang; Mark H. Engelhard; Chuan-Jian Zhong

Alloying palladium (Pd) with other transition metals at the nanoscale has become an important pathway for preparation of low-cost, highly active and stable catalysts. However, the lack of understanding of how the alloying phase state, chemical composition and atomic-scale structure of the alloys at the nanoscale influence their catalytic activity impedes the rational design of Pd-nanoalloy catalysts. This work addresses this challenge by a novel approach to investigating the catalytic oxidation of carbon monoxide (CO) over palladium-nickel (PdNi) nanoalloys with well-defined bimetallic composition, which reveals a remarkable maximal catalytic activity at Pd:Ni ratio of ~50:50. Key to understanding the structural-catalytic synergy is the use of high-energy synchrotron X-ray diffraction coupled to atomic pair distribution function (HE-XRD/PDF) analysis to probe the atomic structure of PdNi nanoalloys under controlled thermochemical treatments and CO reaction conditions. Three-dimensional (3D) models of the atomic structure of the nanoalloy particles were generated by reverse Monte Carlo simulations (RMC) guided by the experimental HE-XRD/PDF data. Structural details of the PdNi nanoalloys were extracted from the respective 3D models and compared with the measured catalytic properties. The comparison revealed a strong correlation between the phase state, chemical composition and atomic-scale structure of PdNi nanoalloys and their catalytic activity for CO oxidation. This correlation is further substantiated by analyzing the first atomic neighbor distances and coordination numbers inside the nanoalloy particles and at their surfaces. These findings have provided new insights into the structural synergy of nanoalloy catalysts by controlling the phase state, composition and atomic structure, complementing findings of traditional density functional theory studies.


Journal of the American Chemical Society | 2012

Role of Support-Nanoalloy Interactions in the Atomic-Scale Structural and Chemical Ordering for Tuning Catalytic Sites

Lefu Yang; Shiyao Shan; Rameshwori Loukrakpam; Valeri Petkov; Yang Ren; Bridgid N. Wanjala; Mark H. Engelhard; Jin Luo; Jun Yin; Yongsheng Chen; Chuan-Jian Zhong

The understanding of the atomic-scale structural and chemical ordering in supported nanosized alloy particles is fundamental for achieving active catalysts by design. This report shows how such knowledge can be obtained by a combination of techniques including X-ray photoelectron spectroscopy and synchrotron radiation based X-ray fine structure absorption spectroscopy and high-energy X-ray diffraction coupled to atomic pair distribution function analysis, and how the support-nanoalloy interaction influences the catalytic activity of ternary nanoalloy (platinum-nickel-cobalt) particles on three different supports: carbon, silica, and titania. The reaction of carbon monoxide with oxygen is employed as a probe to the catalytic activity. The thermochemical processing of this ternary composition, in combination with the different support materials, is demonstrated to be capable of fine-tuning the catalytic activity and stability. The support-nanoalloy interaction is shown to influence structural and chemical ordering in the nanoparticles, leading to support-tunable active sites on the nanoalloys for oxygen activation in the catalytic oxidation of carbon monoxide. A nickel/cobalt-tuned catalytic site on the surface of nanoalloy is revealed for oxygen activation, which differs from the traditional oxygen-activation sites known for oxide-supported noble metal catalysts. The discovery of such support-nanoalloy interaction-enabled oxygen-activation sites introduces a very promising strategy for designing active catalysts in heterogeneous catalysis.


Analytical Chemistry | 2011

Bacterial Inactivation Using Silver-Coated Magnetic Nanoparticles as Functional Antimicrobial Agents

Lingyan Wang; Jin Luo; Shiyao Shan; Elizabeth Crew; Jun Yin; Chuan-Jian Zhong; Brandi Wallek; Season Wong

The ability for silver nanoparticles to function as an antibacterial agent while being separable from the target fluids is important for bacterial inactivation in biological fluids. This report describes the analysis of the antimicrobial activities of silver-coated magnetic nanoparticles synthesized by wet chemical methods. The bacterial inactivation of several types of bacteria was analyzed, including Gram-positive bacteria ( Staphylococcus aureus and Bacillus cereus ) and Gram-negative bacteria ( Pseudomonas aeruginosa , Enterobacter cloacae , and Escherichia coli ). The results have demonstrated the viability of the silver-coated magnetic nanoparticles for achieving effective bacterial inactivation efficiency comparable to and better than that of silver nanoparticles conventionally used. The bacteria inactivation efficiency of our silver-coated MnZn ferrite (MZF@Ag) nanoparticles was also determined for blood platelets samples, demonstrating the potential of utilization in inactivating bacterial growth in platelets prior to transfusion to ensure blood product safety, which also has important implications for enabling the capability of effective separation, delivery, and targeting of the antibacterial agents.


Langmuir | 2013

Catalytic and Electrocatalytic Oxidation of Ethanol over Palladium-Based Nanoalloy Catalysts

Jun Yin; Shiyao Shan; Mei Shan Ng; Lefu Yang; Derrick Mott; Weiqin Fang; Ning Kang; Jin Luo; Chuan-Jian Zhong

The control of the nanoscale composition and structure of alloy catalysts plays an important role in heterogeneous catalysis. This paper describes novel findings of an investigation for Pd-based nanoalloy catalysts (PdCo and PdCu) for ethanol oxidation reaction (EOR) in gas phase and alkaline electrolyte. Although the PdCo catalyst exhibits a mass activity similar to Pd, the PdCu catalyst is shown to display a much higher mass activity than Pd for the electrocatalytic EOR in alkaline electrolyte. This finding is consistent with the finding on the surface enrichment of Pd on the alloyed PdCu surface, in contrast to the surface enrichment of Co in the alloyed PdCo surface. The viability of C-C bond cleavage was also probed for the PdCu catalysts in both gas-phase and electrolyte-phase EOR. In the gas-phase reaction, although the catalytic conversion rate for CO2 product is higher over Pd than PdCu, the nanoalloy PdCu catalyst appears to suppress the formation of acetic acid, which is a significant portion of the product in the case of pure Pd catalyst. In the alkaline electrolyte, CO2 was detected from the gas phase above the electrolyte upon acid treatment following the electrolysis, along with traces of aldehyde and acetic acid. An analysis of the electrochemical properties indicates that the oxophilicity of the base metal alloyed with Pd, in addition to the surface enrichment of metals, may have played an important role in the observed difference of the catalytic and electrocatalytic activities. In comparison with Pd alloyed with Co, the results for Pd alloyed with Cu showed a more significant positive shift of the reduction potential of the oxygenated Pd species on the surface. These findings have important implications for further fine-tuning of the Pd nanoalloys in terms of base metal composition toward highly active and selective catalysts for EOR.


ACS Applied Materials & Interfaces | 2015

PdCu Nanoalloy Electrocatalysts in Oxygen Reduction Reaction: Role of Composition and Phase State in Catalytic Synergy

Jinfang Wu; Shiyao Shan; Jin Luo; Pharrah Joseph; Valeri Petkov; Chuan-Jian Zhong

The catalytic synergy of nanoalloy catalysts depends on the nanoscale size, composition, phase state, and surface properties. This report describes findings of an investigation of their roles in the enhancement of electrocatalytic activity of PdCu alloy nanoparticle catalysts for oxygen reduction reaction (ORR). Pd(n)Cu(100-n) nanoalloys with controlled composition and subtle differences in size and phase state were synthesized by two different wet chemical methods. Detailed electrochemical characterization was performed to determine the surface properties and the catalytic activities. The atomic-scale structures of these catalysts were also characterized by high-energy synchrotron X-ray diffraction coupled with atomic pair distribution function analysis. The electrocatalytic activity and stability were shown to depend on the size, composition, and phase structure. With Pd(n)Cu(100-n) catalysts from both methods, a maximum ORR activity was revealed at Pd/Cu ratio close to 50:50. Structurally, Pd50Cu50 nanoalloys feature a mixed phase consisting of chemically ordered (body-centered cubic type) and disordered (face-centered cubic type) domains. The phase-segregated structure is shown to change to a single phase upon electrochemical potential cycling in ORR condition. While the surface Cu dissolution occurred in PdCu catalysts from the two different synthesis methods, the PdCu with a single-phase character is found to exhibit a tendency of a much greater dissolution than that with the phase segregation. Analysis of the results, along theoretical modeling based on density functional theory calculation, has provided new insights for the correlation between the electrocatalytic activity and the catalyst structures.


Journal of the American Chemical Society | 2016

Composition Tunability and (111)-Dominant Facets of Ultrathin Platinum–Gold Alloy Nanowires toward Enhanced Electrocatalysis

Fangfang Chang; Shiyao Shan; Valeri Petkov; Zakiya Skeete; Aolin Lu; Jonathan Ravid; Jinfang Wu; Jin Luo; Gang Yu; Yang Ren; Chuan-Jian Zhong

The ability for tuning not only the composition but also the type of surface facets of alloyed nanomaterials is important for the design of catalysts with enhanced activity and stability through optimizing both ensemble and ligand effects. Herein we report the first example of ultrathin platinum-gold alloy nanowires (PtAu NWs) featuring composition-tunable and (111) facet-dominant surface characteristics, and the electrocatalytic enhancement for the oxygen reduction reaction (ORR). PtAu NWs of different bimetallic compositions synthesized by a single-phase and surfactant-free method are shown to display an alloyed, parallel-bundled structure in which the individual nanowires exhibit Boerdijk-Coxeter helix type morphology predominant in (111) facets. Results have revealed intriguing catalytic correlation with the binary composition, exhibiting an activity maximum at a Pt:Au ratio of ∼3:1. As revealed by high-energy synchrotron X-ray diffraction and atomic pair distribution function analysis, NWs of this ratio exhibit a clear shrinkage in interatomic bonding distances. In comparison with PtAu nanoparticles of a similar composition and degree of shrinking of atomic-pair distances, the PtAu NWs display a remarkably higher electrocatalytic activity and stability. The outperformance of NWs over nanoparticles is attributed to the predominant (111)-type facets on the surface balancing the contribution of ensemble and ligand effects, in addition to the composition synergy due to optimal adsorption energies for molecular and atomic oxygen species on the surface as supported by DFT computation of models of the catalysts. The findings open up a new pathway to the design and engineering of alloy nanocatalysts with enhanced activity and durability.


Catalysis Science & Technology | 2014

Nanoalloy catalysts: structural and catalytic properties

Shiyao Shan; Jin Luo; Lefu Yang; Chuan-Jian Zhong

Noble metals alloyed with certain transition metals in the form of a nanoalloy exhibit enhanced catalytic or electrocatalytic activities for various reactions, especially when oxygen activation is involved in the reactions. Recent studies have gained important insights into how the interatomic distances and structures of the nanoalloy catalysts operate synergistically in activating oxygen and maneuvering surface oxygenated species. This article highlights some of these insights into nanoalloy catalysts in which Pt is alloyed with a second and/or third transition metal (M/M′ = Co, Fe, V, Ni, Ir, etc.), for catalytic oxidation of carbon monoxide in the gas phase and electrocatalytic oxygen reduction reaction in fuel cell reaction conditions. One important emphasis is placed on understanding of atomic-scale chemical/structural ordering and coordination in correlation with the catalytic or electrocatalytic properties based on findings from ex and in situ synchrotron X-ray techniques such as high energy X-ray diffraction coupled to atomic pair distribution function and X-ray absorption fine structure spectroscopic analysis. The understanding of the details of active sites of the nanoalloys has significant implications for the design of low-cost, active, and durable catalysts for sustainable energy production and conversion reactions.


Small | 2015

Nanoparticle-Structured Highly Sensitive and Anisotropic Gauge Sensors.

Wei Zhao; Jin Luo; Shiyao Shan; Jack P. Lombardi; Yvonne Xu; Kelly Cartwright; Susan Lu; Mark D. Poliks; Chuan-Jian Zhong

The ability to tune gauge factors in terms of magnitude and orientation is important for wearable and conformal electronics. Herein, a sensor device is described which is fabricated by assembling and printing molecularly linked thin films of gold nanoparticles on flexible microelectrodes with unusually high and anisotropic gauge factors. A sharp difference in gauge factors up to two to three orders of magnitude between bending perpendicular (B(⊥)) and parallel (B(||)) to the current flow directions is observed. The origin of the unusual high and anisotropic gauge factors is analyzed in terms of nanoparticle size, interparticle spacing, interparticle structure, and other parameters, and by considering the theoretical aspects of electron conduction mechanism and percolation pathway. A critical range of resistivity where a very small change in strain and the strain orientation is identified to impact the percolation pathway in a significant way, leading to the high and anisotropic gauge factors. The gauge anisotropy stems from molecular and nanoscale fine tuning of interparticle properties of molecularly linked nanoparticle assembly on flexible microelectrodes, which has important implication for the design of gauge sensors for highly sensitive detection of deformation in complex sensing environment or on complex curved surfaces such as wearable electronics and skin sensors.


ACS Applied Materials & Interfaces | 2014

Design of functional nanoparticles and assemblies for theranostic applications.

Zakiya Skeete; Han-Wen Cheng; Elizabeth Crew; Liqin Lin; Wei Zhao; Pharrah Joseph; Shiyao Shan; Hannah Cronk; Jin Luo; Yong-Jun Li; Qunwei Zhang; Chuan-Jian Zhong

Nanostructured materials have found increasing applications in medical therapies and diagnostics (theranostics). The main challenge is the ability to impart the nanomaterials with structurally tailored functional properties which can effectively target biomolecules but also provide signatures for effective detection. The harnessing of functional nanoparticles and assemblies serves as a powerful strategy for the creation of the structurally tailored multifunctional properties. This article highlights some of the important design strategies in recent investigation of metals (especially gold and silver), and magnetically functionalized nanoparticles, and molecularly assembled or biomolecularly conjugated nanoparticles with tunable optical, spectroscopic, magnetic, and electrical properties for applications in several areas of potential theranostic interests. Examples include colorimetric detection of amino acids and small peptides, surface-enhanced Raman scattering detection of biomolecular recognition of proteins and DNAs, delivery in cell transfection and bacteria inactivation, and chemiresistive detection of breath biomarkers. A major emphasis is placed on understanding how the control of the nanostructures and the molecular and biomolecular interactions impact these biofunctional properties, which has important implications for bottom-up designs of theranostic materials.


RSC Advances | 2014

Nanoalloy catalysts for electrochemical energy conversion and storage reactions

Shiyao Shan; Jin Luo; Jinfang Wu; Ning Kang; Wei Zhao; Hannah Cronk; Yinguang Zhao; Pharrah Joseph; Valeri Petkov; Chuan-Jian Zhong

A key challenge to the exploration of electrochemical energy conversion and storage is the ability to engineer the catalyst with low cost, high activity and high stability. Existing catalysts often contain a high percentage of noble metals such as Pt and Pd. One important approach to this challenge involves alloying noble metals with other transition metals in the form of a nanoalloy, which promises not only significant reduction of noble metals in the catalyst but also enhanced catalytic activity and stability in comparison with traditional approaches. In this article, some of the recent insights into the structural and electrocatalytic properties of nanoalloy catalysts in which Pt is alloyed with a second and/or third transition metal (M/M′ = Co, Fe, V, Ni, Ir, etc.), for electrocatalytic oxygen reduction reaction and ethanol oxidation reaction in fuel cells, and oxygen reduction and evolution reactions in rechargeable lithium-air batteries are highlighted. The correlation of the electrocatalytic properties of nanoalloys in these systems with the atomic-scale chemical/structural ordering in the nanoalloy is an important focal point of the investigations, which has significant implications for the design of low-cost, active, and durable catalysts for sustainable energy production and conversion reactions.

Collaboration


Dive into the Shiyao Shan's collaboration.

Top Co-Authors

Avatar

Chuan-Jian Zhong

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Jin Luo

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Valeri Petkov

Central Michigan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Yin

Binghamton University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Zhao

Binghamton University

View shared research outputs
Top Co-Authors

Avatar

Binay Prasai

Central Michigan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge