Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shiyi Zhang is active.

Publication


Featured researches published by Shiyi Zhang.


Journal of the American Chemical Society | 2015

Improving paclitaxel delivery: in vitro and in vivo characterization of PEGylated polyphosphoester-based nanocarriers.

Fuwu Zhang; Shiyi Zhang; Stephanie F. Pollack; Richen Li; Amelia M. Gonzalez; Jingwei Fan; Jiong Zou; Sarah E. Leininger; Adriana Pavía-Sanders; Rachel Johnson; Laura D. Nelson; Jeffery E. Raymond; Mahmoud Elsabahy; Dennis M. P. Hughes; Mark W. Lenox; Tiffany P. Gustafson; Karen L. Wooley

Nanomaterials have great potential to offer effective treatment against devastating diseases by providing sustained release of high concentrations of therapeutic agents locally, especially when the route of administration allows for direct access to the diseased tissues. Biodegradable polyphosphoester-based polymeric micelles and shell cross-linked knedel-like nanoparticles (SCKs) have been designed from amphiphilic block-graft terpolymers, PEBP-b-PBYP-g-PEG, which effectively incorporate high concentrations of paclitaxel (PTX). Well-dispersed nanoparticles physically loaded with PTX were prepared, exhibiting desirable physiochemical characteristics. Encapsulation of 10 wt% PTX, into either micelles or SCKs, allowed for aqueous suspension of PTX at concentrations up to 4.8 mg/mL, as compared to <2.0 μg/mL for the aqueous solubility of the drug alone. Drug release studies indicated that PTX released from these nanostructures was defined through a structure-function relationship, whereby the half-life of sustained PTX release was doubled through cross-linking of the micellar structure to form SCKs. In vitro, physically loaded micellar and SCK nanotherapeutics demonstrated IC50 values against osteosarcoma cell lines, known to metastasize to the lungs (CCH-OS-O and SJSA), similar to the pharmaceutical Taxol formulation. Evaluation of these materials in vivo has provided an understanding of the effects of nanoparticle structure-function relationships on intratracheal delivery and related biodistribution and pharmacokinetics. Overall, we have demonstrated the potential of these novel nanotherapeutics toward future sustained release treatments via administration directly to the sites of lung metastases of osteosarcoma.


Nature Communications | 2013

Disk-cylinder and disk-sphere nanoparticles via a block copolymer blend solution construction

Jiahua Zhu; Shiyi Zhang; Ke Zhang; Xiaojun Wang; Jimmy W. Mays; Karen L. Wooley; Darrin J. Pochan

Researchers strive to produce nanoparticles with complexity in composition and structure. Although traditional spherical, cylindrical and membranous, or planar, nanostructures are ubiquitous, scientists seek more complicated geometries for potential functionality. Here we report the simple solution construction of multigeometry nanoparticles, disk-sphere and disk-cylinder, through a straightforward, molecular-level, blending strategy with binary mixtures of block copolymers. The multigeometry nanoparticles contain disk geometry in the core with either spherical patches along the disk periphery in the case of disk-sphere particles or cylindrical edges and handles in the case of the disk-cylinder particles. The portions of different geometry in the same nanoparticles contain different core block chemistry, thus also defining multicompartments in the nanoparticles. Although the block copolymers chosen for the blends are important for the definition of the final hybrid particles, the control of the kinetic pathway of assembly is critical for successful multigeometry particle construction.


Chemical Science | 2013

Poly(ethylene oxide)-block-polyphosphester-based Paclitaxel Conjugates as a Platform for Ultra-high Paclitaxel-loaded Multifunctional Nanoparticles.

Shiyi Zhang; Jiong Zou; Mahmoud Elsabahy; Amolkumar Karwa; Ang Li; Dennis A. Moore; Richard B. Dorshow; Karen L. Wooley

A new type of degradable, nanoscopic polymer assembly containing ultra-high levels of drug loading via covalent attachment within amphiphilic core-shell nanoparticle morphology has been generated as a potentially effective and safe anti-cancer agent. Poly(ethylene oxide)-block-polyphosphoester-based paclitaxel drug conjugates (PEO-b-PPE-g-PTX) were synthesized by rapid, scalable and versatile approach that involves only two steps: organocatalyst-promoted ring-opening-polymerization followed by click reaction-based conjugation of a PTX prodrug. Variations in the polymer-to-PTX stoichiometries allowed for optimization of the conjugation efficiency, the PTX drug loading and the resulting water solubilities of the entire polymer and the PTX content. The PEO-b-PPE-g-PTX formed well-defined micelles in aqueous solution, with a PTX loading capacity as high as 65 wt%, and a maximum PTX concentration of 6.2 mg/mL in water, which is 25000-fold higher than the aqueous solubility of free PTX. The positive cell-killing activity of PEO-b-PPE-g-PTX against several cancer cell lines is demonstrated, and the presence of pendant reactive functionality provides a powerful platform for future work to involve conjugation of multiple drugs and imaging agents to achieve chemotherapy and bioimaging.


Advanced Healthcare Materials | 2014

Poly(ethylene oxide)-block-polyphosphoester-graft-paclitaxel conjugates with acid-labile linkages as a pH-sensitive and functional nanoscopic platform for paclitaxel delivery.

Jiong Zou; Fuwu Zhang; Shiyi Zhang; Stephanie F. Pollack; Mahmoud Elsabahy; Jingwei Fan; Karen L. Wooley

There has been an increasing interest to develop new types of stimuli-responsive drug delivery vehicles with high drug loading and controlled release properties for chemotherapeutics. An acid-labile poly(ethylene oxide)-block-polyphosphoester-graft-PTX drug conjugate (PEO-b-PPE-g-PTX G2) degradable, polymeric paclitaxel (PTX) conjugate containing ultra-high levels of PTX loading is improved significantly, in this second-generation development, which involves connection of each PTX molecule to the polymer backbone via a pH-sensitive β-thiopropionate linkage. The PEO-b-PPE-g-PTX G2 forms well-defined nanoparticles in an aqueous solution, by direct dissolution into water, with a number-averaged hydrodynamic diameter of 114 ± 31 nm, and exhibits a PTX loading capacity as high as 53 wt%, with a maximum PTX concentration of 0.68 mg mL(-1) in water (vs 1.7 μg mL(-1) for free PTX). The PEO-b-PPE-g-PTX G2 shows accelerated drug release under acidic conditions (≈50 wt% PTX released in 8 d) compared with neutral conditions (≈20 wt% PTX released in 8 d). Compared to previously reported polyphosphoester-based PTX drug conjugates, PEO-b-PPE-g-PTX G1 without the β-thiopropionate linker, the PEO-b-PPE-g-PTX G2 shows pH-triggered drug release property and 5- to 8-fold enhanced in vitro cytotoxicity against two cancer cell lines.


ACS Nano | 2013

Robust Magnetic/Polymer Hybrid Nanoparticles Designed for Crude Oil Entrapment and Recovery in Aqueous Environments

Adriana Pavía-Sanders; Shiyi Zhang; Jeniree A. Flores; Jonathan E. Sanders; Jeffery E. Raymond; Karen L. Wooley

Well-defined, magnetic shell cross-linked knedel-like nanoparticles (MSCKs) with hydrodynamic diameters ca. 70 nm were constructed through the co-assembly of amphiphilic block copolymers of PAA20-b-PS280 and oleic acid-stabilized magnetic iron oxide nanoparticles using tetrahydrofuran, N,N-dimethylformamide, and water, ultimately transitioning to a fully aqueous system. These hybrid nanomaterials were designed for application as sequestering agents for hydrocarbons present in crude oil, based upon their combination of amphiphilic organic domains, for aqueous solution dispersibility and capture of hydrophobic guest molecules, with inorganic core particles for magnetic responsivity. The employment of these MSCKs in a contaminated aqueous environment resulted in the successful removal of the hydrophobic contaminants at a ratio of 10 mg of oil per 1 mg of MSCK. Once loaded, the crude oil-sorbed nanoparticles were easily isolated via the introduction of an external magnetic field. The recovery and reusability of these MSCKs were also investigated. These results suggest that deployment of hybrid nanocomposites, such as these, could aid in environmental remediation efforts, including at oil spill sites, in particular, following the bulk recovery phase.


Journal of the American Chemical Society | 2011

Orthogonally dual-clickable Janus nanoparticles via a cyclic templating strategy.

Shiyi Zhang; Zhou Li; Sandani Samarajeewa; Guorong Sun; Chao Yang; Karen L. Wooley

Synthetic asymmetrical systems, Janus particles and patchy particles, are capable of undergoing hierarchical assembly processes that mimic those of Nature, to serve as switchable devices, optical probes, phase-transfer catalysts, and multifunctional drug carriers, each of which benefits from opposing surface patterns that behave differently. Production of nanometer-sized Janus particles that are equipped with efficient chemistries remains a challenge. A robust Janus-faced polymer nanoparticle framework that presents two orthogonally click-reactive surface chemistries has been generated by a recyclable strategy that involves reactive functional group transfer by templating against gold nanoparticle substrates. This anisotropic functionalization approach is compatible with a wide range of soft materials, providing Janus nanoparticles for the construction of dual-functionalized devices by accurately controlling chemical functionality at the nanoscopic level.


ACS Nano | 2015

Preparation and in Vitro Antimicrobial Activity of Silver-Bearing Degradable Polymeric Nanoparticles of Polyphosphoester-block-Poly(l-lactide)

Young Hyo Lim; Kristin M. Tiemann; Gyu Seong Heo; Patrick O. Wagers; Yohannes H. Rezenom; Shiyi Zhang; Fuwu Zhang; Wiley J. Youngs; David A. Hunstad; Karen L. Wooley

The development of well-defined polymeric nanoparticles (NPs) as delivery carriers for antimicrobials targeting human infectious diseases requires rational design of the polymer template, an efficient synthetic approach, and fundamental understanding of the developed NPs, e.g., drug loading/release, particle stability, and other characteristics. Herein, we developed and evaluated the in vitro antimicrobial activity of silver-bearing, fully biodegradable and functional polymeric NPs. A series of degradable polymeric nanoparticles (dNPs), composed of phosphoester and L-lactide and designed specifically for silver loading into the hydrophilic shell and/or the hydrophobic core, were prepared as potential delivery carriers for three different types of silver-based antimicrobials-silver acetate or one of two silver carbene complexes (SCCs). Silver-loading capacities of the dNPs were not influenced by the hydrophilic block chain length, loading site (i.e., core or shell), or type of silver compound, but optimization of the silver feed ratio was crucial to maximize the silver loading capacity of dNPs, up to ca. 12% (w/w). The release kinetics of silver-bearing dNPs revealed 50% release at ca. 2.5-5.5 h depending on the type of silver compound. In addition, we undertook a comprehensive evaluation of the rates of hydrolytic or enzymatic degradability and performed structural characterization of the degradation products. Interestingly, packaging of the SCCs in the dNP-based delivery system improved minimum inhibitory concentrations up to 70%, compared with the SCCs alone, as measured in vitro against 10 contemporary epidemic strains of Staphylococcus aureus and eight uropathogenic strains of Escherichia coli. We conclude that these dNP-based delivery systems may be beneficial for direct epithelial treatment and/or prevention of ubiquitous bacterial infections, including those of the skin and urinary tract.


Chemical Science | 2014

Tunable mechano-responsive organogels by ring-opening copolymerizations of N -carboxyanhydrides

Jingwei Fan; Jiong Zou; Xun He; Fuwu Zhang; Shiyi Zhang; Jeffery E. Raymond; Karen L. Wooley

The simple copolymerization of N-carboxyanhydride (NCA) monomers is utilized to generate copolypeptides having a combination of α-helix and β-sheet sub-structures that, when grown from a solvophilic synthetic polymer block segment, are capable of driving mechano-responsive supramolecular sol-to-gel-to-sol and sol-to-gel-to-gel transitions reversibly, which allow also for injection-based processing and self-healing behaviors. A new type of polypeptide-based organogelator, methoxy poly(ethylene glycol)-block-poly(γ-benzyl-l-glutamate-co-glycine) (mPEG-b-P(BLG-co-Gly)), is facilely synthesized by statistical ring-opening copolymerizations (ROPs) of γ-benzyl-l-glutamate (BLG) and glycine (Gly) NCAs initiated by mPEG-amine. These systems exhibit tunable secondary structures and result in sonication stimulus responsiveness of the organogels with the polypeptide segment variation, controlled by varying the ratio of BLG NCA to Gly NCA during the copolymerizations. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) studies indicate the α-helical component decreases while the β-sheet content increases systematically with a higher mole fraction of Gly in the polypeptide segment. The supramolecular assembly of β-sheet nanofibrils, having a tunable width over the range of 10.4 - 14.5 nm with varied BLG to Gly ratio, are characterized by transmission electron microscopy (TEM). The further self-assembly of these nanostructures into 3-D gel networks within N,N-dimethylformamide (DMF) occurs at low critical gelation concentrations (CGC) (lowest ca. 0.6 wt %). Increased BLG to Gly ratios lead to an increase of the α-helical component in the secondary structures of the polypeptide segments, resulting in wider and more flexible nanofibrils. The presence of α-helical component in the polymers enhances the stability of the organogels against sonication, and instantaneous gel-to-gel transitions are observed as in situ reconstruction of networks occurs within the gelled materials after sonication. In marked contrast, the β-sheet-rich gel, prepared from mPEG-b-PGly, exhibits an instant gel-to-sol transition after sonication is applied. The CGC concentration and stiffness of this mPEG-b-P(BLG-co-Gly) organogel system can be tuned by simply varying the percentages of α-helix and β-sheet in the secondary structures through control of the BLG to Gly ratio during synthesis. The mechanical properties of these organogels are studied by dynamic mechanical analyses (DMA), having storage moduli of ca. 12.1 kPa at room temperature. The injectability and self-healing capabilities are demonstrated by direct observation of the macroscopic self-healing behavior experiment.


Scientific Reports | 2013

Surface Charges and Shell Crosslinks Each Play Significant Roles in Mediating Degradation, Biofouling, Cytotoxicity and Immunotoxicity for Polyphosphoester-based Nanoparticles

Mahmoud Elsabahy; Shiyi Zhang; Fuwu Zhang; Zhou J. Deng; Young Hyo Lim; Hai Wang; Perouza Parsamian; Paula T. Hammond; Karen L. Wooley

The construction of nanostructures from biodegradable precursors and shell/core crosslinking have been pursued as strategies to solve the problems of toxicity and limited stability, respectively. Polyphosphoester (PPE)-based micelles and crosslinked nanoparticles with non-ionic, anionic, cationic, and zwitterionic surface characteristics for potential packaging and delivery of therapeutic and diagnostic agents, were constructed using a quick and efficient synthetic strategy, and importantly, demonstrated remarkable differences in terms of cytotoxicity, immunotoxicity, and biofouling properties, as a function of their surface characteristics and also with dependence on crosslinking throughout the shell layers. For instance, crosslinking of zwitterionic micelles significantly reduced the immunotoxicity, as evidenced from the absence of secretions of any of the 23 measured cytokines from RAW 264.7 mouse macrophages treated with the nanoparticles. The micelles and their crosslinked analogs demonstrated lower cytotoxicity than several commercially-available vehicles, and their degradation products were not cytotoxic to cells at the range of the tested concentrations. PPE-nanoparticles are expected to have broad implications in clinical nanomedicine as alternative vehicles to those involved in several of the currently available medications.


ACS Nano | 2013

Synthesis, characterization, and in vivo efficacy of shell cross-linked nanoparticle formulations carrying silver antimicrobials as aerosolized therapeutics.

Parth N. Shah; Lily Yun Lin; Justin A. Smolen; Jasur A. Tagaev; Sean P. Gunsten; Daniel S. Han; Gyu Seong Heo; Yali Li; Fuwu Zhang; Shiyi Zhang; Brian D. Wright; Matthew J. Panzner; Wiley J. Youngs; Steven L. Brody; Karen L. Wooley; Carolyn L. Cannon

The use of nebulizable, nanoparticle-based antimicrobial delivery systems can improve efficacy and reduce toxicity for treatment of multi-drug-resistant bacteria in the chronically infected lungs of cystic fibrosis patients. Nanoparticle vehicles are particularly useful for applying broad-spectrum silver-based antimicrobials, for instance, to improve the residence time of small-molecule silver carbene complexes (SCCs) within the lung. Therefore, we have synthesized multifunctional, shell cross-linked knedel-like polymeric nanoparticles (SCK NPs) and capitalized on the ability to independently load the shell and core with silver-based antimicrobial agents. We formulated three silver-loaded variants of SCK NPs: shell-loaded with silver cations, core-loaded with SCC10, and combined loading of shell silver cations and core SCC10. All three formulations provided a sustained delivery of silver over the course of at least 2–4 days. The two SCK NP formulations with SCC10 loaded in the core each exhibited excellent antimicrobial activity and efficacy in vivo in a mouse model of Pseudomonas aeruginosa pneumonia. SCK NPs with shell silver cation-load only, while efficacious in vitro, failed to demonstrate efficacy in vivo. However, a single dose of core SCC10-loaded SCK NPs (0.74 ± 0.16 mg Ag) provided a 28% survival advantage over sham treatment, and administration of two doses (0.88 mg Ag) improved survival to 60%. In contrast, a total of 14.5 mg of Ag+ delivered over 5 doses at 12 h intervals was necessary to achieve a 60% survival advantage with a free-drug (SCC1) formulation. Thus, SCK NPs show promise for clinical impact by greatly reducing antimicrobial dosage and dosing frequency, which could minimize toxicity and improve patient adherence.

Collaboration


Dive into the Shiyi Zhang's collaboration.

Top Co-Authors

Avatar

Fuwu Zhang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiahua Zhu

University of Delaware

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge