Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shiyou Chen is active.

Publication


Featured researches published by Shiyou Chen.


Advanced Materials | 2013

Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth‐Abundant Solar Cell Absorbers

Shiyou Chen; Aron Walsh; Xingao Gong; Su-Huai Wei

The kesterite-structured semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4 are drawing considerable attention recently as the active layers in earth-abundant low-cost thin-film solar cells. The additional number of elements in these quaternary compounds, relative to binary and ternary semiconductors, results in increased flexibility in the material properties. Conversely, a large variety of intrinsic lattice defects can also be formed, which have important influence on their optical and electrical properties, and hence their photovoltaic performance. Experimental identification of these defects is currently limited due to poor sample quality. Here recent theoretical research on defect formation and ionization in kesterite materials is reviewed based on new systematic calculations, and compared with the better studied chalcopyrite materials CuGaSe2 and CuInSe2 . Four features are revealed and highlighted: (i) the strong phase-competition between the kesterites and the coexisting secondary compounds; (ii) the intrinsic p-type conductivity determined by the high population of acceptor CuZn antisites and Cu vacancies, and their dependence on the Cu/(Zn+Sn) and Zn/Sn ratio; (iii) the role of charge-compensated defect clusters such as [2CuZn +SnZn ], [VCu +ZnCu ] and [ZnSn +2ZnCu ] and their contribution to non-stoichiometry; (iv) the electron-trapping effect of the abundant [2CuZn +SnZn ] clusters, especially in Cu2ZnSnS4. The calculated properties explain the experimental observation that Cu poor and Zn rich conditions (Cu/(Zn+Sn) ≈ 0.8 and Zn/Sn ≈ 1.2) result in the highest solar cell efficiency, as well as suggesting an efficiency limitation in Cu2ZnSn(S,Se)4 cells when the S composition is high.


Applied Physics Letters | 2009

Crystal and Electronic Band Structure of Cu2ZnSnX4 (X = S and Se) Photovoltaic Absorbers: First-Principles Insights

Shiyou Chen; Xingao Gong; Aron Walsh; Su-Huai Wei

The structural and electronic properties of Cu2ZnSnS4 and Cu2ZnSnSe4 are studied using first-principles calculations. We find that the low energy crystal structure obeys the octet rule and is the kesterite (KS) structure. However, the stannite or partially disordered KS structures can also exist in synthesized samples due to the small energy cost. We find that the dependence of the band structure on the (Cu,Zn) cation ordering is weak and predict that the band gap of Cu2ZnSnSe4 should be on the order of 1.0 eV and not 1.5 eV as was reported in previous absorption measurements.


Applied Physics Letters | 2010

Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4

Shiyou Chen; X. G. Gong; Aron Walsh; Su-Huai Wei

Cu2ZnSnS4 is one of the most promising quaternary absorber materials for thin-film solar cells. Examination of the thermodynamic stability of this quaternary compound reveals that the stable chemical potential region for the formation of stoichiometric compound is small. Under these conditions, the dominant defect will be p-type CuZn antisite, which has an acceptor level deeper than the Cu vacancy. The dominant self-compensated defect pair in this quaternary compound is [CuZn−+ZnCu+]0, which leads to the formation of various polytype structures of Cu2ZnSnS4. We propose that to maximize the solar cell performance, growth of Cu2ZnSnS4 under Cu-poor/Zn-rich conditions will be optimal, if the precipitation of ZnS can be avoided by kinetic barriers.


Angewandte Chemie | 2015

Self‐Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites

Aron Walsh; David O. Scanlon; Shiyou Chen; Xingao Gong; Su-Huai Wei

Hybrid halide perovskites such as methylammonium lead iodide (CH3NH3PbI3) exhibit unusually low free-carrier concentrations despite being processed at low-temperatures from solution. We demonstrate, through quantum mechanical calculations, that an origin of this phenomenon is a prevalence of ionic over electronic disorder in stoichiometric materials. Schottky defect formation provides a mechanism to self-regulate the concentration of charge carriers through ionic compensation of charged point defects. The equilibrium charged vacancy concentration is predicted to exceed 0.4 % at room temperature. This behavior, which goes against established defect conventions for inorganic semiconductors, has implications for photovoltaic performance.


Applied Physics Letters | 2010

Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction

Wan-Jian Yin; Shiyou Chen; Ji-Hui Yang; Xingao Gong; Yanfa Yan; Su-Huai Wei

Due to its large band gap (3.2 eV), TiO2 cannot absorb sun light effectively. To reduce its band gap, various approaches have been attempted; most of them are using doping to modify its band structure. Using first-principles band structure calculations, we show that unlike the rutile phases, the band gap of TiO2 in the anatase phase can be effectively reduced by applying stress along a soft direction. We propose that this approach of tuning the band gap by applying stress along soft direction of a layered semiconductor is general and should be applicable to other anisotropic materials.


Journal of the American Chemical Society | 2012

Furfuraldehyde Hydrogenation on Titanium Oxide-Supported Platinum Nanoparticles Studied by Sum Frequency Generation Vibrational Spectroscopy: Acid–Base Catalysis Explains the Molecular Origin of Strong Metal–Support Interactions

L. Robert Baker; Griffin Kennedy; Matthijs Van Spronsen; Antoine Hervier; Xiaojun Cai; Shiyou Chen; Lin-Wang Wang; Gabor A. Somorjai

This work describes a molecular-level investigation of strong metal-support interactions (SMSI) in Pt/TiO(2) catalysts using sum frequency generation (SFG) vibrational spectroscopy. This is the first time that SFG has been used to probe the highly selective oxide-metal interface during catalytic reaction, and the results demonstrate that charge transfer from TiO(2) on a Pt/TiO(2) catalyst controls the product distribution of furfuraldehyde hydrogenation by an acid-base mechanism. Pt nanoparticles supported on TiO(2) and SiO(2) are used as catalysts for furfuraldehyde hydrogenation. As synthesized, the Pt nanoparticles are encapsulated in a layer of poly(vinylpyrrolidone) (PVP). The presence of PVP prevents interaction of the Pt nanoparticles with their support, so identical turnover rates and reaction selectivity is observed regardless of the supporting oxide. However, removal of the PVP with UV light results in a 50-fold enhancement in the formation of furfuryl alcohol by Pt supported on TiO(2), while no change is observed for the kinetics of Pt supported on SiO(2). SFG vibrational spectroscopy reveals that a furfuryl-oxy intermediate forms on TiO(2) as a result of a charge transfer interaction. This furfuryl-oxy intermediate is a highly active and selective precursor to furfuryl alcohol, and spectral analysis shows that the Pt/TiO(2) interface is required primarily for H spillover. Density functional calculations predict that O-vacancies on the TiO(2) surface activate the formation of the furfuryl-oxy intermediate via an electron transfer to furfuraldehyde, drawing a strong analogy between SMSI and acid-base catalysis.


Applied Physics Letters | 2012

Abundance of CuZn + SnZn and 2CuZn + SnZn defect clusters in kesterite solar cells

Shiyou Chen; Lin-Wang Wang; Aron Walsh; X. G. Gong; Su-Huai Wei

Kesterite solar cells show the highest efficiency when the absorber layers (Cu2ZnSnS4 [CZTS], Cu2ZnSnSe4 [CZTSe] and their alloys) are non-stoichiometric with Cu/(Zn+Sn)≈0.8 and Zn/Sn≈1.2. The fundamental cause is so far not understood. Using a first-principles theory, we show that passivated defect clusters such as CuZn+SnZn and 2CuZn+SnZn have high concentrations even in stoichiometric samples with Cu/(Zn+Sn) and Zn/Sn ratios near 1. The partially passivated CuZn+SnZn cluster produces a deep donor level in the band gap of CZTS, and the fully passivated 2CuZn+SnZn cluster causes a significant band gap decrease. Both effects are detrimental to photovoltaic performance, so Zn-rich and Cu, Sn-poor conditions are required to prevent their formation and increase the efficiency. The donor level is relatively shallower in CZTSe than in CZTS, which gives an explanation to the higher efficiency obtained in Cu2ZnSn(S,Se)4 (CZTSSe) cells with high Se content.


ACS Nano | 2013

Composition- and Band-Gap-Tunable Synthesis of Wurtzite-Derived Cu2ZnSn(S1–xSex)4 Nanocrystals: Theoretical and Experimental Insights

Fengjia Fan; Liang Wu; Ming Gong; Guangyao Liu; Yi-Xiu Wang; Shu-Hong Yu; Shiyou Chen; Lin-Wang Wang; Xingao Gong

The wurtzite-derived Cu₂ZnSn(S(1-x)Se(x))₄ alloys are studied for the first time through combining theoretical calculations and experimental characterizations. Ab initio calculations predict that wurtzite-derived Cu₂ZnSnS₄ and Cu₂ZnSnSe₄ are highly miscible, and the band gaps of the mixed-anion alloys can be linearly tuned from 1.0 to 1.5 eV through changing the composition parameter x from 0 to 1. A synthetic procedure for the wurtzite-derived Cu₂ZnSn(S(1-x)Se(x))₄ alloy nanocrystals with tunable compositions has been developed. A linear tunable band-gap range of 0.5 eV is observed in the synthesized alloy nanocrystals, which shows good agreement with the ab initio calculations.


Journal of Applied Physics | 2012

First-principles study on the effective masses of zinc-blend-derived Cu2Zn−IV−VI4 (IV = Sn, Ge, Si and VI = S, Se)

Heng-Rui Liu; Shiyou Chen; Yingteng Zhai; Hongjun Xiang; X. G. Gong; Su-Huai Wei

The electron and hole effective masses of kesterite (KS) and stannite (ST) structured Cu2Zn−IV−VI4 (IV = Sn, Ge, Si and VI = S, Se) semiconductors are systematically studied using first-principles calculations. We find that the electron effective masses are almost isotropic, while strong anisotropies are observed for the hole effective masses. The electron effective masses are typically much smaller than the hole effective masses for all studied compounds. The ordering of the topmost three valence bands and the corresponding hole effective masses of the KS and ST structures are different due to the different sign of the crystal-field splitting. The electron and hole effective masses of Se-based compounds are significantly smaller compared to the corresponding S-based compounds. They also decrease as the atomic number of the group IV elements (Si, Ge, Sn) increases, but the decrease is less notable than that caused by the substitution of S by Se.


Journal of the American Chemical Society | 2016

Deciphering Halogen Competition in Organometallic Halide Perovskite Growth

Bin Yang; Jong Keum; Olga S. Ovchinnikova; Alex Belianinov; Shiyou Chen; Mao-Hua Du; Ilia N. Ivanov; Christopher M. Rouleau; David B. Geohegan; Kai Xiao

Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films, a major unresolved question is the competition between multiple halide species (e.g., I(-), Cl(-), Br(-)) in the formation of the mixed-halide perovskite crystals. Whether Cl(-) ions are successfully incorporated into the perovskite crystal structure or, alternatively, where they are located is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br(-) or Cl(-) ions can promote crystal growth, yet reactive I(-) ions prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl(-) ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performing and cost-effective optoelectronic devices.

Collaboration


Dive into the Shiyou Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Su-Huai Wei

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin-Wang Wang

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Han

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Junhao Chu

East China Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge