Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shizen Ohnishi is active.

Publication


Featured researches published by Shizen Ohnishi.


The Plant Cell | 2004

Patterning of Virus-Infected Glycine max Seed Coat Is Associated with Suppression of Endogenous Silencing of Chalcone Synthase Genes

Mineo Senda; Chikara Masuta; Shizen Ohnishi; Kazunori Goto; Atsushi Kasai; Teruo Sano; Jin-Sung Hong; Stuart A. MacFarlane

Most commercial Glycine max (soybean) varieties have yellow seeds because of loss of pigmentation in the seed coat. It has been suggested that inhibition of seed coat pigmentation in yellow G. max may be controlled by homology-dependent silencing of chalcone synthase (CHS) genes. Our analysis of CHS mRNA and short-interfering RNAs provide clear evidence that the inhibition of seed coat pigmentation in yellow G. max results from posttranscriptional rather than transcriptional silencing of the CHS genes. Furthermore, we show that mottling symptoms present on the seed coat of G. max plants infected with some viruses can be caused by suppression of CHS posttranscriptional gene silencing (PTGS) by a viral silencing suppressor protein. These results demonstrate that naturally occurring PTGS plays a key role in expression of a distinctive phenotype in plants and present a simple clear example of the elucidation of the molecular mechanism for viral symptom induction.


Breeding Science | 2012

Suppressive mechanism of seed coat pigmentation in yellow soybean

Mineo Senda; Tasuku Kurauchi; Atsushi Kasai; Shizen Ohnishi

In soybean seeds, numerous variations in colors and pigmentation patterns exist, most of which are observed in the seed coat. Patterns of seed coat pigmentation are determined by four alleles (I, ii, ik and i) of the classically defined I locus, which controls the spatial distribution of anthocyanins and proanthocyanidins in the seed coat. Most commercial soybean cultivars produce yellow seeds with yellow cotyledons and nonpigmented seed coats, which are important traits of high-quality seeds. Plants carrying the I or ii allele show complete inhibition of pigmentation in the seed coat or pigmentation only in the hilum, respectively, resulting in a yellow seed phenotype. Classical genetic analyses of the I locus were performed in the 1920s and 1930s but, until recently, the molecular mechanism by which the I locus regulated seed coat pigmentation remained unclear. In this review, we provide an overview of the molecular suppressive mechanism of seed coat pigmentation in yellow soybean, with the main focus on the effect of the I allele. In addition, we discuss seed coat pigmentation phenomena in yellow soybean and their relationship to inhibition of I allele action.


Archives of Virology | 2007

Infection of soybean by cucumber mosaic virus as determined by viral movement protein

Jin-Sung Hong; Shizen Ohnishi; Chikara Masuta; Jang-Kyung Choi; Ki-Hyun Ryu

Summary.To characterize the host range determinant of the soybean strain of Cucumber mosaic virus (CMV) we analyzed a series of pseudorecombinants and chimeric viruses between infectious transcripts from two soybean strains (CMV-SC and CMV-SD) and an ordinary strain (CMV-Y). CMV-Y could not infect soybeans, even locally. Systemic infection of the two soybean-adapted soybean isolates on soybean plants mapped to RNA3. Chimeric RNA3s from between CMV-SC and CMV-Y, and chimeric RNA3s from between CMV-SC and CMV-SD, were made and inoculated onto wild soybean Iwate and soybean cv. Tsurunoko. The 3a region determined the viral systemic movement in the plants. In the wild soybean ecotype Hyougo, cell-to-cell movement of two different CMV soybean strains, one of which infects systemically while the other does not, in the inoculated leaves were almost the same, suggesting that the resistance of soybean operates at the level of long-distance movement. Our results clearly suggest that movement protein is a host determinant of CMV soybean strains.


Theoretical and Applied Genetics | 2011

Variation of GmIRCHS (Glycine max inverted-repeat CHS pseudogene) is related to tolerance of low temperature-induced seed coat discoloration in yellow soybean

Shizen Ohnishi; Hideyuki Funatsuki; Atsushi Kasai; Tasuku Kurauchi; Naoya Yamaguchi; Toru Takeuchi; Hiroyuki Yamazaki; Hideki Kurosaki; Shigehisa Shirai; Tomoaki Miyoshi; Harukuni Horita; Mineo Senda

In yellow soybean, seed coat pigmentation is inhibited by post-transcriptional gene silencing (PTGS) of chalcone synthase (CHS) genes. A CHS cluster named GmIRCHS (Glycine max inverted-repeat CHS pseudogene) is suggested to cause PTGS in yellow-hilum cultivars. Cold-induced seed coat discoloration (CD), a commercially serious deterioration of seed appearance, is caused by an inhibition of this PTGS upon exposure to low temperatures. In the highly CD-tolerant cultivar Toyoharuka, the GmIRCHS structure differs from that of other cultivars. The aim of this study was to determine whether the variation of GmIRCHS structure among cultivars is related to variations in CD tolerance. Using two sets of recombinant inbred lines between Toyoharuka and CD-susceptible cultivars, we compared the GmIRCHS genotype and CD tolerance phenotype during low temperature treatment. The GmIRCHS genotype was related to the phenotype of CD tolerance. A QTL analysis around GmIRCHS showed that GmIRCHS itself or a region located very close to it was responsible for CD tolerance. The variation in GmIRCHS can serve as a useful DNA marker for marker-assisted selection for breeding CD tolerance. In addition, QTL analysis of the whole genome revealed a minor QTL that also affected CD tolerance.


Breeding Science | 2012

Fine mapping of foxglove aphid (Aulacorthum solani) resistance gene Raso1 in soybean and its effect on tolerance to Soybean dwarf virus transmitted by foxglove aphid.

Shizen Ohnishi; Noriyuki Miyake; Toru Takeuchi; Fumiko Kousaka; Satoshi Hiura; Osamu Kanehira; Miki Saito; Takashi Sayama; Ayako Higashi; Masao Ishimoto; Yoshinori Tanaka; Shohei Fujita

Soybean dwarf virus (SbDV) causes serious dwarfing, yellowing and sterility in soybean (Glycine max). The soybean cv. Adams is tolerant to SbDV infection in the field and exhibits antibiosis to foxglove aphid (Aulacorthum solani), which transmits SbDV. This antibiosis (termed “aphid resistance”) is required for tolerance to SbDV in the field in segregated progenies of Adams. A major quantitative trait locus, Raso1, is reported for foxglove aphid resistance. Our objectives were to fine map Raso1 and to reveal whether Raso1 alone is sufficient to confer both aphid resistance and SbDV tolerance. We introduced Raso1 into cv. Toyomusume by backcrossing and investigated the degree of aphid antibiosis to foxglove aphid and the degree of tolerance to SbDV in the field. All Raso1-introduced backcross lines showed aphid resistance. Interestingly, only one Raso1-introduced backcross line (TM-1386) showed tolerance to SbDV in the field. The results demonstrated Raso1 alone is sufficient to confer aphid resistance but insufficient for SbDV tolerance. Tolerance to SbDV was indicated to require additional gene(s) to Raso1. Additionally, Raso1 was mapped to a 63-kb interval on chromosome 3 of the Williams 82 sequence assembly (Glyma1). This interval includes a nucleotide-binding site–leucine-rich repeat encoding gene and two other genes in the Williams 82 soybean genome sequence.


Breeding Science | 2013

Fine mapping of the major Soybean dwarf virus resistance gene Rsdv1 of the soybean cultivar ‘Wilis’

Yoko Yamashita; Toru Takeuchi; Shizen Ohnishi; Jun Sasaki; Akiko Tazawa

Soybean dwarf virus (SbDV), a Luteoviridae family member, causes dwarfing, yellowing and sterility of soybean (Glycine max), leading to one of the most serious problems in soybean production in northern Japan. Previous studies revealed that the Indonesian soybean cultivar ‘Wilis’ is resistant to SbDV and that the resistance can be introduced into Japanese cultivars. A major QTL for SbDV resistance has been reported between SSR markers Sat_217 and Satt211 on chromosome 5. In this study, we named this QTL Rsdv1 (resistance to SbDV) and developed near-isogenic lines incorporating Rsdv1 (Rsdv1-NILs) using Sat_217 and Satt211 markers. The Rsdv1-NILs were resistant to SbDV in greenhouse inoculation and field tests, indicating that Rsdv1 alone is sufficient for the resistance phenotype. We fine-mapped Rsdv1 within the 44-kb region between Sat_11 and Sct_13. None of the six genes predicted in this region was closely related to known virus resistance genes in plants. Thus, Rsdv1 may confer resistance by a previously unknown mechanism. We suggest that Rsdv1 may be a useful source for the Japanese soybean breeding program to introduce SbDV resistance.


Breeding Science | 2014

Method for selection of soybeans tolerant to seed cracking under chilling temperatures.

Naoya Yamaguchi; Hiroyuki Yamazaki; Shizen Ohnishi; Chika Suzuki; Seiji Hagihara; Tomoaki Miyoshi; Mineo Senda

In Hokkaido, northern Japan, soybean [Glycine max (L.) Merr.] crops are damaged by cold weather. Chilling temperatures result in the appearance of cracking seeds (CS) in soybean crops, especially those grown in eastern and northern Hokkaido. Seed coats of CS are severely split on the dorsal side, and the cotyledons are exposed and frequently separated. CS occurrence causes unstable production because these seeds have no commodity value. However, little is known about the CS phenomenon. The aims of this study were to identify the cold-sensitive stage associated with CS occurrence and to develop a method to select CS-tolerant lines. First, we examined the relationship between chilling temperatures after flowering and CS occurrence in field tests. The average temperature 14 to 21 days after flowering was negatively correlated with the rate of CS. Second, we evaluated differences in CS tolerance among soybean cultivars and breeding lines in field tests. ‘Toyohomare’ and ‘Toiku-238’ were more CS-tolerant than ‘Yukihomare’ and ‘Toyomusume’. Third, we developed a selection method in which plants were subjected to 21-day chilling-temperature treatment from 10 days after flowering in a phytotron. This enabled comparisons of CS tolerance among cultivars. This selection method will be useful for breeding CS-tolerant soybeans.


Breeding Science | 2013

Comparative analysis of the inverted repeat of a chalcone synthase pseudogene between yellow soybean and seed coat pigmented mutants

Mineo Senda; Satsuki Nishimura; Atsushi Kasai; Setsuzo Yumoto; Yoshitake Takada; Yoshinori Tanaka; Shizen Ohnishi; Tomohisa Kuroda

In soybean, the I gene inhibits pigmentation over the entire seed coat, resulting in yellow seeds. It is thought that this suppression of seed coat pigmentation is due to naturally occurring RNA silencing of chalcone synthase genes (CHS silencing). Fully pigmented seeds can be found among harvested yellow seeds at a very low percentage. These seed coat pigmented (scp) mutants are generated from yellow soybeans by spontaneous recessive mutation of the I gene. A candidate for the I gene, GmIRCHS, contains a perfect inverted repeat (IR) of a CHS pseudogene (pseudoCHS3) and transcripts of GmIRCHS form a double-stranded CHS RNA that potentially triggers CHS silencing. One CHS gene, ICHS1, is located 680 bp downstream of GmIRCHS. Here, the GmIRCHS–ICHS1 cluster was compared in scp mutants of various origins. In these mutants, sequence divergence in the cluster resulted in complete or partial loss of GmIRCHS in at least the pseudoCHS3 region. This result is consistent with the notion that the IR of pseudoCHS3 is sufficient to induce CHS silencing, and further supports that GmIRCHS is the I gene.


Environmental and Experimental Botany | 2010

Low temperature stress at different flower developmental stages affects pollen development, pollination, and pod set in soybean

Shizen Ohnishi; Tomoaki Miyoshi; Shigehisa Shirai


Theoretical and Applied Genetics | 2009

A novel major quantitative trait locus controlling seed development at low temperature in soybean (Glycine max)

Tatsuya M. Ikeda; Shizen Ohnishi; Mineo Senda; Tomoaki Miyoshi; Masao Ishimoto; Keisuke Kitamura; Hideyuki Funatsuki

Collaboration


Dive into the Shizen Ohnishi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideyuki Funatsuki

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge