Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shizhang Peng is active.

Publication


Featured researches published by Shizhang Peng.


Chemosphere | 2012

Seasonal variations of CH4 and N2O emissions in response to water management of paddy fields located in Southeast China

Huijing Hou; Shizhang Peng; Junzeng Xu; Shihong Yang; Zhi Mao

Water management is one of the most important practices that affect methane (CH(4)) and nitrous oxide (N(2)O) emissions from paddy fields. A field experiment was designed to study the effects of controlled irrigation (CI) on CH(4) and N(2)O emissions from paddy fields, with traditional irrigation (TI) as the control. The effects of CI on CH(4) and N(2)O emissions from paddy fields were very clear. The peaks of CH(4) emissions from the CI paddies were observed 1-2d after the water layer disappeared. Afterward, the emissions reduced rapidly and remained low until the soil was re-flooded. A slight increase of CH(4) emission was observed in a short period after re-flooding. N(2)O emissions peaks from CI paddies were all observed 8-10d after the fertilization at the WFPS ranging from 78.1% to 85.3%. Soil drying caused substantial N(2)O emissions, whereas no substantial N(2)O emissions were observed when the soil was re-wetted after the dry phase. Compared with TI, the cumulative CH(4) emissions from the CI fields were reduced by 81.8% on the average, whereas the cumulative N(2)O emissions were increased by 135.4% on the average. The integrative global warming potential of CH(4) and N(2)O on a 100-year horizon decreased by 27.3% in the CI paddy fields, whereas no significant difference in the rice yield was observed between the CI and TI fields. These results suggest that CI can effectively mitigate the integrative greenhouse effect caused by CH(4) and N(2)O emissions from paddy fields while ensuring the rice yield.


Stochastic Environmental Research and Risk Assessment | 2013

Changes in daily temperature and precipitation extremes in the Yellow River Basin, China

Weiguang Wang; Quanxi Shao; Tao Yang; Shizhang Peng; Zhongbo Yu; John Taylor; Wanqiu Xing; Cuiping Zhao; Fengchao Sun

Spatiotemporal changes in climatic extremes in the Yellow River Basin from 1959 to 2008 were investigated on the basis of a suite of 27 climatic indices derived from daily temperature and precipitation data from 75 meteorological stations with the help of the Mann–Kendall test, linear regression method and GIS technique. Furthermore, the changes in the probability distribution of the extreme indices were examined. The results indicate: (1) The whole basin is dominated by significant increase in the frequency of warm days and warm nights, and dominated by significant decrease in the frequency of cold days and cold nights. Although trends in absolute temperature indices show less spatial coherence compared with that in the percentile-based temperature indices, overall increasing trends can be found in Max Tmax (TXx), Min Tmax (TXn), Max Tmin (TNx) and Min Tmin (TNn). (2) Although the spatial patterns and the number of stations with significant changes for threshold and duration temperature indices are also not identical, general positive trends in warm indices (i.e., summer days (SU25), tropical nights (TR20), warm spell duration indicator and growing season length) and negative trends in cold indices (i.e., frost days, ice days and cold spell duration indicator) can be found in the basin. Annual nighttime temperature has increased at a faster rate than that in daytime temperature, leading to obvious decrease in diurnal temperature range. (3) The changes in precipitation indices are much weaker and less spatially coherent compared with these of temperature indices. For all precipitation indices, only few stations are characterized by significantly change in extreme precipitation, and their spatial patterns are always characterized by irregular and insignificant positive and negative changes. However, generally, changes in precipitation extremes present drying trends, although most of the changes are insignificant. (4) Results at seasonal scale show that warming trends occur for all seasons, particularly in winter. Different from that in other three seasons, general positive trends in max 1-day precipitation (Rx1DAY) and max 5-day precipitation (Rx5DAY) are found in winter. Analysis of changes in probability distributions of indices for 1959–1983 and 1984–2008 indicate a remarkable shift toward warmer condition and a less pronounced tendency toward drier condition during the past decades. The results can provide beneficial reference to water resource and eco-environment management strategies in the Yellow River Basin for associated policymakers and stakeholders.


Journal of Hydrologic Engineering | 2011

Spatial and Temporal Characteristics of Reference Evapotranspiration Trends in the Haihe River Basin, China

Weiguang Wang; Shizhang Peng; Tao Yang; Quanxi Shao; Junzeng Xu; Wanqiu Xing

In this study, the spatial and temporal patterns of trends for reference evapotranspiration (RET) at 34 meteorological stations (between 1957 and 2007) in the Haihe River basin, China, were analyzed using the Mann-Kendall (MK) test and the Sen’s method. To reveal the possible causes and main driving forces of the changing patterns of RET, the spatial distribution and temporal patterns of trends for four meteorological variables (i.e., temperature, wind speed, relative humidity, and sunshine duration) were examined for each station. In addition, partial relative analysis between RET and meteorological variables and a sensitivity analysis of RET to meteorological variables were conducted. The results show the following: First, the Haihe River basin is dominated by a significant decreasing MK trend in annual RET at >95% confidence level, which is observed at most stations in the eastern and southern areas of the basin. There are no observed trends or significant increasing MK trends in annual RET in the west...


Archives of Agronomy and Soil Science | 2013

Evaluation and calibration of simple methods for daily reference evapotranspiration estimation in humid East China

Junzeng Xu; Shizhang Peng; Jiali Ding; Qi Wei; Yanmei Yu

The current study aims to improve the performance of simple methods for the estimation of daily reference evapotranspiration (ET0) in humid East China, namely Priestley–Taylor 1972 (P-T 1972), Hargreaves–Samani 1985 (H-S 1985) and Turc 1961 (TU 1961). These methods were evaluated and calibrated based on well-watered grass lysimeter experiments. The FAO-56 Penman–Monteith equation (FAO-56 PM) is the best method, and the radiation-based methods (TU 1961 and P-T 1972) perform much better than the temperature-based method (H-S 1985). In the simple methods, the coefficients are calibrated to: 1.34 for P-T 1972; 0.0186, 23.47 and 17.06 for TU 1961; and 0.0027 and 0.449 for H-S 1985. The locally calibrated TU 1961 and P-T 1972 perform much better than the original, with either the observed ET0r or the ET0c obtained by FAO-56 PM as standard. However, local calibration does not significantly improve the performance of the H-S 1985 method. In humid East China, FAO-56 PM is the best method for daily ET0 calculation. TU 1961, especially if locally calibrated, is the optimal choice as a simple substitute for FAO-56 PM when solar radiation is available. Otherwise, serious local calibration is strongly recommended before applying H-S 1985 for daily ET0 estimation.


Communications in Soil Science and Plant Analysis | 2013

Nitrogen Loss from Paddy Field with Different Water and Nitrogen Managements in Taihu Lake Region of China

Shihong Yang; Shizhang Peng; Junzeng Xu; Huijing Hou; Xiaoli Gao

High rates of nitrogen (N) fertilizer were applied to a paddy field in the Taihu Lake region of China to maximize crop production. Excessive N input has resulted in serious agricultural nonpoint pollution. Water and N management are two important approaches to regulating N loss from paddy fields. This study aimed to determine N losses through ammonia volatilization, runoff, and leaching from a paddy field during the rice-growing season in Taihu Lake region. Field experiments with two water and two N managements were conducted. The N exported to the environment through ammonia volatilization, runoff, and leaching from the paddy field was 37.2 kg N ha−1 to 102 kg N ha−1, with ammonia volatilization accounting for 69.6% to 83.5% of N loss. Ammonium and dissolved organic N significantly contributed to N loss through runoff and leaching. Controlled irrigation and site-specific N management (CS) significantly decreased N losses through ammonia volatilization, runoff, and leaching. Compared with the N and irrigation water inputs in traditional water and N management, those generated by controlled irrigation and site-specific N management were reduced by 34.6% to 43.0% and 59.2% to 63.3%, respectively. Moreover, the reduction in N and water input in the CS paddy field enabled the maintenance of high rice yield; it significantly increased N use efficiency by 15.1% to 34.9% and decreased the N exported to the environment by ammonia volatilization, runoff, and leaching by 53.1% to 56.1%. Therefore, the joint application of controlled irrigation and site-specific N management efficiently reduces agricultural nonpoint pollution through N loss from paddy fields.


Paddy and Water Environment | 2015

Hindcasting the effects of climate change on rice yields, irrigation requirements, and water productivity

Yufeng Luo; Yunlu Jiang; Shizhang Peng; Yuanlai Cui; Shahbaz Khan; Yalong Li; Weiguang Wang

An ex post facto investigation of the effects of climate change on rice production over the past few decades will be helpful for planning future climate change. Here, a simulation study was carried out to evaluate the impacts of climate change on the yields, irrigation requirements, and water productivity of rice in Kaifeng, China from 1951 to 2010. The rice growth model ORYZA 2000 was adopted to simulate the yields and irrigation requirements (IR); then, water productivity in terms of irrigation water (WPI), evapotranspiration (WPET), and total water use (WPI+R) was calculated, and the Mann–Kendall test was employed to detect the trends in the variables. The reduction in yield was caused by the shortened GSL, increased temperature, and decreased hours of sunshine. The decreased seasonal IR resulted from both the increased rainfall and decreased ETc, while the latter played a dominate role. The WPI seemed not sensitivity to climate change, while WPET and WPI+R were strongly linked with climate change. More productive crop variety or changing the planting schedule could avoid the negative effects posed by global warming, stilling, and dimming.


Archives of Agronomy and Soil Science | 2015

Proper methods and its calibration for estimating reference evapotranspiration using limited climatic data in Southwestern China

Xiaoli Gao; Shizhang Peng; Junzeng Xu; Shihong Yang; Weiguang Wang

Proper methods for estimating reference evapotranspiration (ET0) using limited climatic data are critical, if complete weather data are unavailable. Based on the weather data of 19 stations in Guizhou Province, China, several simple methods for ET0 estimation, including the Hargreaves, Priestley–Taylor, Irmak–Allen, McCloud, Turk, and Valiantzas methods, were involved in comparison with the standard FAO-56 Penman–Monteith (PM) method. The Turk equation performs well for estimating ET0 in humid locations. Both the Turk method and the Valiantzas method initially performed acceptably with mean root-mean-square difference (RMSD) of 0.1472 and 0.1282 mm d−1, respectively, with only requiring parameters of temperature (T), relative humidity (RH), and sunshine duration (n). The corresponding calibration formulas to Turk and Valiantzas method were suggested as the most appropriate method for ET0 estimation with the RMSD of 0.0098 and 0.0250 mm d−1, respectively. The local calibrated Hargreaves–Samani method performed well and can be applied as the substitute of FAO-56 PM method under the condition that only the daily mean, maximum, and minimum temperatures were available, and local calibrated McCloud method was acceptable if only the mean temperature was available.


Photosynthetica | 2014

A modified nonrectangular hyperbola equation for photosynthetic light-response curves of leaves with different nitrogen status

Junzeng Xu; Yanmei Yu; Shizhang Peng; Shihong Yang; Linxian Liao

Chlorophyll index and leaf nitrogen status (SPAD value) was incorporated into the nonrectangular hyperbola (NRH) equation for photosynthetic light-response (PLR) curve to establish a modified NRH equation to overcome the parameter variation. Ten PLR curves measured on rice leaves with different SPAD values were collected from pot experiments with different nitrogen (N) dosages. The coefficients of initial slope of the PLR curve and the maximum net photosynthetic rate in NRH equation increased linearly with the increase of leaf SPAD. The modified NRH equation was established by multiplying a linear SPAD-based adjustment factor with the NRH equation. It was sufficient in describing the PLR curves with unified coefficients for rice leaf with different SPAD values. SPAD value, as the indicator of leaf N status, could be used for modification of NRH equation to overcome the shortcoming of large coefficient variations between individual leaves with different N status. The performance of the SPAD-modified NRH equation should be further validated by data collected from different kinds of plants growing under different environments.


The Scientific World Journal | 2013

Solubility and Leaching Risks of Organic Carbon in Paddy Soils as Affected by Irrigation Managements

Junzeng Xu; Shihong Yang; Shizhang Peng; Qi Wei; Xiaoli Gao

Influence of nonflooding controlled irrigation (NFI) on solubility and leaching risk of soil organic carbon (SOC) were investigated. Compared with flooding irrigation (FI) paddies, soil water extractable organic carbon (WEOC) and dissolved organic carbon (DOC) in NFI paddies increased in surface soil but decreased in deep soil. The DOC leaching loss in NFI field was 63.3 kg C ha−1, reduced by 46.4% than in the FI fields. It indicated that multi-wet-dry cycles in NFI paddies enhanced the decomposition of SOC in surface soils, and less carbon moved downward to deep soils due to less percolation. That also led to lower SOC in surface soils in NFI paddies than in FI paddies, which implied that more carbon was released into the atmosphere from the surface soil in NFI paddies. Change of solubility of SOC in NFI paddies might lead to potential change in soil fertility and sustainability, greenhouse gas emission, and bioavailability of trace metals or organic pollutants.


Journal of Irrigation and Drainage Engineering-asce | 2012

Urban Weather Data to Estimate Reference Evapotranspiration for Rural Irrigation Management

Yufeng Luo; Yunlu Jiang; Shizhang Peng; Shahbaz Khan; Xueliang Cai; Weiguang Wang; Xiyun Jiao

AbstractWeather data measured in urban areas are generally more easily available than those in rural areas. If the urban weather data are used to calculate the reference crop evapotranspiration (ET0) for rural irrigation management or spatial and temporal trend analysis, the results may be biased because of the differences in weather variables. We collected daily data for mean, maximum, and minimum temperatures; relative humidity; average wind speed; and sunshine duration from two stations: Kaifeng Station in the City of Kaifeng and Huibei Station in the nearby irrigation scheme for 1984–2009. ET0 for both stations were calculated using the FAO-56 Penman-Monteith method and then compared. The results indicated that the difference in daily ET0 was remarkable [with relative error (RE) of 52.6%], the difference between monthly average ET0 increased gradually during the last three decades and the temporal trends in annual average daily ET0 were opposite. There were significant differences in ETC (with RE of 3...

Collaboration


Dive into the Shizhang Peng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Quanxi Shao

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shahbaz Khan

Charles Sturt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge