Shizuko Kosugi
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shizuko Kosugi.
Circulation | 2011
Shizuka Minamishima; Kotaro Kida; Kentaro Tokuda; Huifang Wang; Patrick Sips; Shizuko Kosugi; Joseph B. Mandeville; Emmanuel Buys; Peter Brouckaert; Philip K. Liu; Christina H. Liu; Kenneth D. Bloch; Fumito Ichinose
Background— Sudden cardiac arrest (CA) is a leading cause of death worldwide. Breathing nitric oxide (NO) reduces ischemia/reperfusion injury in animal models and in patients. The objective of this study was to learn whether inhaled NO improves outcomes after CA and cardiopulmonary resuscitation (CPR). Methods and Results— Adult male mice were subjected to potassium-induced CA for 7.5 minutes whereupon CPR was performed with chest compression and mechanical ventilation. One hour after CPR, mice were extubated and breathed air alone or air supplemented with 40 ppm NO for 23 hours. Mice that were subjected to CA/CPR and breathed air exhibited a poor 10-day survival rate (4 of 13), depressed neurological and left ventricular function, and increased caspase-3 activation and inflammatory cytokine induction in the brain. Magnetic resonance imaging revealed brain regions with marked water diffusion abnormality 24 hours after CA/CPR in mice that breathed air. Breathing air supplemented with NO for 23 hours starting 1 hour after CPR attenuated neurological and left ventricular dysfunction 4 days after CA/CPR and markedly improved 10-day survival rate (11 of 13; P=0.003 versus mice breathing air). The protective effects of inhaled NO on the outcome after CA/CPR were associated with reduced water diffusion abnormality, caspase-3 activation, and cytokine induction in the brain and increased serum nitrate/nitrite levels. Deficiency of the &agr;1 subunit of soluble guanylate cyclase, a primary target of NO, abrogated the ability of inhaled NO to improve outcomes after CA/CPR. Conclusions— These results suggest that NO inhalation after CA and successful CPR improves outcome via soluble guanylate cyclase–dependent mechanisms.
Journal of Biological Chemistry | 2012
Eizo Marutani; Shizuko Kosugi; Kentaro Tokuda; Ashok Khatri; Rebecca Nguyen; Dmitriy N. Atochin; Kotaro Kida; Klaus van Leyen; Ken Arai; Fumito Ichinose
Background: Hydrogen sulfide (H2S) exerts neuroprotective effects, whereas H2S may cause neurotoxicity via N-methyl-d-aspartate receptor (NMDAR) activation. Results: A newly-synthesized H2S-releasing NMDAR antagonist S-memantine exerted lower neurotoxicity and prevented ischemic neuronal death more markedly than conventional H2S-releasing compounds or memantine alone. Conclusion: S-memantine prevents ischemic brain injury without neurotoxicity. Significance: H2S-releasing NMDAR antagonists may prevent neurodegeneration of various causes. Physiological levels of H2S exert neuroprotective effects, whereas high concentrations of H2S may cause neurotoxicity in part via activation of NMDAR. To characterize the neuroprotective effects of combination of exogenous H2S and NMDAR antagonism, we synthesized a novel H2S-releasing NMDAR antagonist N-((1r,3R,5S,7r)-3,5-dimethyladamantan-1-yl)-4-(3-thioxo-3H-1,2-dithiol-4-yl)-benzamide (S-memantine) and examined its effects in vitro and in vivo. S-memantine was synthesized by chemically combining a slow releasing H2S donor 4-(3-thioxo-3H-1,2-dithiol-4-yl)-benzoic acid (ACS48) with a NMDAR antagonist memantine. S-memantine increased intracellular sulfide levels in human neuroblastoma cells (SH-SY5Y) 10-fold as high as that was achieved by ACS48. Incubation with S-memantine after reoxygenation following oxygen and glucose deprivation (OGD) protected SH-SY5Y cells and murine primary cortical neurons more markedly than did ACS48 or memantine. Glutamate-induced intracellular calcium accumulation in primary cortical neurons were aggravated by sodium sulfide (Na2S) or ACS48, but suppressed by memantine and S-memantine. S-memantine prevented glutamate-induced glutathione depletion in SH-SY5Y cells more markedly than did Na2S or ACS48. Administration of S-memantine after global cerebral ischemia and reperfusion more robustly decreased cerebral infarct volume and improved survival and neurological function of mice than did ACS48 or memantine. These results suggest that an H2S-releasing NMDAR antagonist derivative S-memantine prevents ischemic neuronal death, providing a novel therapeutic strategy for ischemic brain injury.
Journal of Biological Chemistry | 2012
Eizo Marutani; Shizuko Kosugi; Kentaro Tokuda; Ashok Khatri; Rebecca Nguyen; Dmitriy N. Atochin; Kotaro Kida; Klaus van Leyen; Ken Arai; Fumito Ichinose
Background: Hydrogen sulfide (H2S) exerts neuroprotective effects, whereas H2S may cause neurotoxicity via N-methyl-d-aspartate receptor (NMDAR) activation. Results: A newly-synthesized H2S-releasing NMDAR antagonist S-memantine exerted lower neurotoxicity and prevented ischemic neuronal death more markedly than conventional H2S-releasing compounds or memantine alone. Conclusion: S-memantine prevents ischemic brain injury without neurotoxicity. Significance: H2S-releasing NMDAR antagonists may prevent neurodegeneration of various causes. Physiological levels of H2S exert neuroprotective effects, whereas high concentrations of H2S may cause neurotoxicity in part via activation of NMDAR. To characterize the neuroprotective effects of combination of exogenous H2S and NMDAR antagonism, we synthesized a novel H2S-releasing NMDAR antagonist N-((1r,3R,5S,7r)-3,5-dimethyladamantan-1-yl)-4-(3-thioxo-3H-1,2-dithiol-4-yl)-benzamide (S-memantine) and examined its effects in vitro and in vivo. S-memantine was synthesized by chemically combining a slow releasing H2S donor 4-(3-thioxo-3H-1,2-dithiol-4-yl)-benzoic acid (ACS48) with a NMDAR antagonist memantine. S-memantine increased intracellular sulfide levels in human neuroblastoma cells (SH-SY5Y) 10-fold as high as that was achieved by ACS48. Incubation with S-memantine after reoxygenation following oxygen and glucose deprivation (OGD) protected SH-SY5Y cells and murine primary cortical neurons more markedly than did ACS48 or memantine. Glutamate-induced intracellular calcium accumulation in primary cortical neurons were aggravated by sodium sulfide (Na2S) or ACS48, but suppressed by memantine and S-memantine. S-memantine prevented glutamate-induced glutathione depletion in SH-SY5Y cells more markedly than did Na2S or ACS48. Administration of S-memantine after global cerebral ischemia and reperfusion more robustly decreased cerebral infarct volume and improved survival and neurological function of mice than did ACS48 or memantine. These results suggest that an H2S-releasing NMDAR antagonist derivative S-memantine prevents ischemic neuronal death, providing a novel therapeutic strategy for ischemic brain injury.
Journal of the American Heart Association | 2015
Eizo Marutani; Marina Yamada; Tomoaki Ida; Kentaro Tokuda; Kohei Ikeda; Shinichi Kai; Kazuhiro Shirozu; Kei Hayashida; Shizuko Kosugi; Kenjiro Hanaoka; Masao Kaneki; Takaaki Akaike; Fumito Ichinose
Background Hydrogen sulfide (H2S) exhibits protective effects in various disease models including cerebral ischemia–reperfusion (I/R) injury. Nonetheless, mechanisms and identity of molecules responsible for neuroprotective effects of H2S remain incompletely defined. In the current study, we observed that thiosulfate, an oxidation product of H2S, mediates protective effects of an H2S donor compound sodium sulfide (Na2S) against neuronal I/R injury. Methods and Results We observed that thiosulfate in cell culture medium is not only required but also sufficient to mediate cytoprotective effects of Na2S against oxygen glucose deprivation and reoxygenation of human neuroblastoma cell line (SH‐SY5Y) and murine primary cortical neurons. Systemic administration of sodium thiosulfate (STS) improved survival and neurological function of mice subjected to global cerebral I/R injury. Beneficial effects of STS, as well as Na2S, were associated with marked increase of thiosulfate, but not H2S, in plasma and brain tissues. These results suggest that thiosulfate is a circulating “carrier” molecule of beneficial effects of H2S. Protective effects of thiosulfate were associated with inhibition of caspase‐3 activity by persulfidation at Cys163 in caspase‐3. We discovered that an SLC13 family protein, sodium sulfate cotransporter 2 (SLC13A4, NaS‐2), facilitates transport of thiosulfate, but not sulfide, across the cell membrane, regulating intracellular concentrations and thus mediating cytoprotective effects of Na2S and STS. Conclusions The protective effects of H2S are mediated by thiosulfate that is transported across cell membrane by NaS‐2 and exerts antiapoptotic effects via persulfidation of caspase‐3. Given the established safety track record, thiosulfate may be therapeutic against ischemic brain injury.
Anesthesia & Analgesia | 2015
Toru Igarashi; Takeshi Suzuki; Katsuya Mori; Kei Inoue; Hiroyuki Seki; Takashige Yamada; Shizuko Kosugi; Shizuka Minamishima; Nobuyuki Katori; Fumiya Sano; Takayuki Abe; Hiroshi Morisaki
BACKGROUND:Neutrophil-derived lipocalin-2 exerts bacteriostatic effects through retardation of iron uptake by the Gram-negative organisms like Escherichia coli. We tested the hypothesis that the expression of lipocalin-2, a bacteriostatic protein, was upregulated by induction of surgical site infection (SSI) with E coli in healthy and diseased rats and that epidural anesthesia modulated its expression. METHODS:Male Wistar rats were randomized into a healthy or disease group, the latter of which was administered lipopolysaccharide. Both groups were further divided into 3 subgroups, the control, saline, and lidocaine groups: group healthy control (n = 10), healthy saline (n = 10), and healthy lidocaine (n = 10) versus group disease control (n = 15), disease saline (n = 18), and disease lidocaine (n = 19), respectively. While saline was epidurally administered to the control and saline groups, lidocaine was administered to the lidocaine groups. Except for the control groups, E coli was injected to the pseudosurgical site to mimic SSI after abdominal surgery. Plasma concentrations of inflammatory cytokine and lipocalin-2 were measured. At 72 hours, the surgical site tissues were obtained to evaluate mRNA expression of lipocalin-2 and E coli DNA expression. RESULTS:All disease subgroups showed markedly increased plasma inflammatory cytokines versus the healthy subgroups. Among the disease subgroups, plasma concentrations of lipocalin-2 and tissue mRNA expression of lipocalin-2 were significantly increased in group disease lidocaine versus the others. Concurrently, E coli DNA expression in the tissue specimens was also significantly lower in group disease lidocaine as compared with group disease saline. CONCLUSIONS:Epidural anesthesia was associated with an increase in the expression lipocalin-2 and a decrease in the expression of E coli DNA at pseudosurgical sites in sick but not healthy rats. These observations suggest a potential mechanism by which epidural anesthesia could reduce the risk of SSI.
The Clinical Journal of Pain | 2017
Yuki Onishi-Kato; Masaya Nakamura; Akio Iwanami; Masayoshi Kato; Takeshi Suzuki; Shizuko Kosugi; Nobuyuki Katori; Saori Hashiguchi; Koichi Tsuzaki; Junzo Takeda; Hiroshi Morisaki
Objective: Some patients experience severe chronic pain after intramedullary spinal cord tumor (IMSCT) resection, but the underlying mechanisms have yet to be fully elucidated. We aimed to investigate perioperative factors associated with chronic pain after IMSCT resection. Materials and Methods: We analyzed data from a postal survey and the medical records of patients who had undergone IMSCT resection in our institution between 2000 and 2008. Chronic pain was assessed using the Neuropathic Pain Symptom Inventory score, and its associations with factors related to tumor pathology, patient demographics, neurological findings, surgery, anesthesia, and perioperative management were determined. Results: Seventy-eight consecutive patients (55 men and 23 women; age 17 to 79 y) were included in the statistical analysis of the present study. In univariate analyses, sex, body mass index, preoperative tumor-related pain, preoperative nonsteroidal anti-inflammatory drugs, intraoperative hypotension, postoperative corticosteroids, and decrease in Japanese Orthopaedic Association (JOA) scores were found to be associated with postsurgical chronic central pain. Logistic regression analysis identified 3 significant factors: a decline in JOA scores compared with preoperative values (odds ratio [OR], 3.33; 95% confidence interval [CI], 1.18-9.42; P=0.023), intraoperative hypotension (OR, 3.01; 95% CI, 1.02-8.97; P=0.047), and postoperative corticosteroids (OR, 3.21; 95% CI, 1.02-10.09; P=0.046). Discussion: Decline in JOA score, intraoperative hypotension, and postoperative corticosteroids are independently associated with postsurgical chronic central pain. Intraoperative hypotension and the use of postoperative corticosteroids can be avoided or modified during perioperative management. As results from animal studies have indicated that the administration of corticosteroids may intensify chronic pain, further studies in larger cohorts are required to definitively determine the effect of corticosteroids on postsurgical central pain.
Signa Vitae | 2016
Takuya Kurazumi; Takeshi Suzuki; Rie Wakamiya; Kikuko Suga; Yoshihisa Morita; Junichi Masuda; Shizuko Kosugi; Nobuyuki Katori; Hiroshi Morisaki
It remains unknown whether application of nasal high flow (NHF) is effective after liberation from non-invasive ventilation (NIV). This study was aimed at investigating the effect of NHF in patients ready for weaning from NIV. With institutional ethic committee approval, patients receiving NIV due to hypoxemic respiratory failure for more than 24 hours were enrolled. After passing the weaning criteria with continuous positive airway pressure (CPAP) mode [fraction of inspiratory oxygen (FIO2) ≦0.5, SIGNA VITAE 2016; 11(1):
Japanese Journal of Anesthesiology | 2018
Naho Ihara; Shizuko Kosugi; Kenta Wakaizumi; Yoko Fukuda; Daisuke Nishimura; Takashige Yamada; Saori Hashiguchi; Hiroshi Morisaki
A & A Practice | 2018
Takashige Yamada; Takeshi Suzuki; Reiko Murase; Hiromasa Nagata; Shizuko Kosugi
JJSPC | 2016
Naho Ihara; Shizuko Kosugi; Saori Hashiguchi; Rie Wakamiya; Daisuke Nishimura; Hiroshi Morisaki