Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sho Kobayashi is active.

Publication


Featured researches published by Sho Kobayashi.


Nature Cell Biology | 2014

Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice

José Pedro Friedmann Angeli; Manuela Schneider; Bettina Proneth; Yulia Y. Tyurina; Vladimir A. Tyurin; Victoria Jayne Hammond; Nadja Herbach; Michaela Aichler; Axel Walch; Elke Eggenhofer; Devaraj Basavarajappa; Olof Rådmark; Sho Kobayashi; Tobias Seibt; Heike Beck; Frauke Neff; Irene Esposito; Rüdiger Wanke; Heidi Förster; Olena Yefremova; Georg W. Bornkamm; Edward K. Geissler; Stephen B. Thomas; Brent R. Stockwell; Valerie B. O’Donnell; Valerian E. Kagan; Joel A. Schick; Marcus Conrad

Ferroptosis is a non-apoptotic form of cell death induced by small molecules in specific tumour types, and in engineered cells overexpressing oncogenic RAS. Yet, its relevance in non-transformed cells and tissues is unexplored and remains enigmatic. Here, we provide direct genetic evidence that the knockout of glutathione peroxidase 4 (Gpx4) causes cell death in a pathologically relevant form of ferroptosis. Using inducible Gpx4−/− mice, we elucidate an essential role for the glutathione/Gpx4 axis in preventing lipid-oxidation-induced acute renal failure and associated death. We furthermore systematically evaluated a library of small molecules for possible ferroptosis inhibitors, leading to the discovery of a potent spiroquinoxalinamine derivative called Liproxstatin-1, which is able to suppress ferroptosis in cells, in Gpx4−/− mice, and in a pre-clinical model of ischaemia/reperfusion-induced hepatic damage. In sum, we demonstrate that ferroptosis is a pervasive and dynamic form of cell death, which, when impeded, promises substantial cytoprotection.


Nature Chemical Biology | 2017

ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition.

Sebastian Doll; Bettina Proneth; Yulia Y. Tyurina; Elena Panzilius; Sho Kobayashi; Irina Ingold; Martin Irmler; Johannes Beckers; Michaela Aichler; Axel Walch; Holger Prokisch; Dietrich Trümbach; Gaowei Mao; Feng Qu; Hülya Bayır; Joachim Füllekrug; Christina H. Scheel; Wolfgang Wurst; Joel A. Schick; Valerian E. Kagan; José Pedro Friedmann Angeli; Marcus Conrad

Ferroptosis is a form of regulated necrotic cell death controlled by glutathione peroxidase 4 (GPX4). At present, mechanisms that could predict sensitivity and/or resistance and that may be exploited to modulate ferroptosis are needed. We applied two independent approaches-a genome-wide CRISPR-based genetic screen and microarray analysis of ferroptosis-resistant cell lines-to uncover acyl-CoA synthetase long-chain family member 4 (ACSL4) as an essential component for ferroptosis execution. Specifically, Gpx4-Acsl4 double-knockout cells showed marked resistance to ferroptosis. Mechanistically, ACSL4 enriched cellular membranes with long polyunsaturated ω6 fatty acids. Moreover, ACSL4 was preferentially expressed in a panel of basal-like breast cancer cell lines and predicted their sensitivity to ferroptosis. Pharmacological targeting of ACSL4 with thiazolidinediones, a class of antidiabetic compound, ameliorated tissue demise in a mouse model of ferroptosis, suggesting that ACSL4 inhibition is a viable therapeutic approach to preventing ferroptosis-related diseases.


The FASEB Journal | 2011

Dopaminergic neurons of system xc−-deficient mice are highly protected against 6-hydroxydopamine-induced toxicity

Ann Massie; Anneleen Schallier; Seong Woong Kim; Ruani Fernando; Sho Kobayashi; Heike Beck; Dimitri De Bundel; Katia Vermoesen; Shiro Bannai; Ilse Smolders; Marcus Conrad; Nikolaus Plesnila; Hideyo Sato; Yvette Michotte

Malfunctioning of system xc–, responsible for exchanging intracellular glutamate for extracellular cystine, can cause oxidative stress and excitotoxicity, both important phenomena in the pathogenesis of Parkinsons disease (PD). We used mice lacking xCT (xCT_/_ mice), the specific subunit of system xc˜, to investigate the involvement of this antiporter in PD. Although cystine that is imported via system xc˜ is reduced to cysteine, the rate‐limiting substrate in the synthesis of glutathione, deletion of xCT did not result in decreased glutathione levels in striatum. Accordingly, no signs of increased oxidative stress could be observed in striatum or substantia nigra of xCT_/_ mice. In sharp contrast to expectations, xCT_/_ mice were less susceptible to 6‐hydroxydopamine (6‐OHDA)‐induced neurodegeneration in the substantia nigra pars compacta compared to their age‐matched wild‐type littermates. This reduced sensitivity to a PD‐inducing toxin might be related to the decrease of 70% in striatal extracellular glutamate levels that was observed in mice lacking xCT. The current data point toward system xc˜ as a possible target for the development of new pharmacotherapies for the treatment of PD and emphasize the need to continue the search for specific ligands for system xc˜.—Massie, A., Schallier, A., Kim, S. W., Fernando, R., Kobayashi, S., Beck, H., De Bundel, D., Vermoesen, K., Bannai, S., Smolders, I., Conrad, M., Plesnila, N., Sato, H., Michotte, Y. Dopaminergic neurons of system xc “‐deficient mice are highly protected against 6‐hydroxydopamine‐induced toxicity. FASEB J. 25, 1359–1369 (2011). www.fasebj.org


Journal of Biological Chemistry | 2015

Cystathionine Is a Novel Substrate of Cystine/Glutamate Transporter: IMPLICATIONS FOR IMMUNE FUNCTION*

Sho Kobayashi; Mami Sato; Takayuki Kasakoshi; Takumi Tsutsui; Masahiro Sugimoto; Mitsuhiko Osaki; Futoshi Okada; Kiharu Igarashi; Jun Hiratake; Takujiro Homma; Marcus Conrad; Junichi Fujii; Tomoyoshi Soga; Shiro Bannai; Hideyo Sato

Background: System xc− is involved in various pathophysiological conditions, such as neurodegenerative disorders and cancer. Results: Extracellular cystathionine competitively inhibited cystine uptake and could be exchanged with intracellular glutamate via system xc−. Conclusion: Cystathionine is exclusively transported into immune tissues as the third physiological substrate of system xc−. Significance: Cystathionine can be exchanged with glutamate to reduce extracellular glutamate levels. The cystine/glutamate transporter, designated as system xc−, is important for maintaining intracellular glutathione levels and extracellular redox balance. The substrate-specific component of system xc−, xCT, is strongly induced by various stimuli, including oxidative stress, whereas it is constitutively expressed only in specific brain regions and immune tissues, such as the thymus and spleen. Although cystine and glutamate are the well established substrates of system xc− and the knockout of xCT leads to alterations of extracellular redox balance, nothing is known about other potential substrates. We thus performed a comparative metabolite analysis of tissues from xCT-deficient and wild-type mice using capillary electrophoresis time-of-flight mass spectrometry. Although most of the analyzed metabolites did not show significant alterations between xCT-deficient and wild-type mice, cystathionine emerged as being absent specifically in the thymus and spleen of xCT-deficient mice. No expression of either cystathionine β-synthase or cystathionine γ-lyase was observed in the thymus and spleen of mice. In embryonic fibroblasts derived from wild-type embryos, cystine uptake was significantly inhibited by cystathionine in a concentration-dependent manner. Wild-type cells showed an intracellular accumulation of cystathionine when incubated in cystathionine-containing buffer, which concomitantly stimulated an increased release of glutamate into the extracellular space. By contrast, none of these effects could be observed in xCT-deficient cells. Remarkably, unlike knock-out cells, wild-type cells could be rescued from cystine deprivation-induced cell death by cystathionine supplementation. We thus conclude that cystathionine is a novel physiological substrate of system xc− and that the accumulation of cystathionine in immune tissues is exclusively mediated by system xc−.


Free Radical Research | 2017

xCT deficiency aggravates acetaminophen-induced hepatotoxicity under inhibition of the transsulfuration pathway

Eun Sil Kang; Jaeyong Lee; Takujiro Homma; Toshihiro Kurahashi; Sho Kobayashi; Atsunori Nabeshima; Sohsuke Yamada; Han Geuk Seo; Satoshi Miyata; Hideyo Sato; Junichi Fujii

Abstract Cystine, an oxidized form of cysteine (Cys), is imported into cells via the protein xCT, which is also associated with the export of glutamate as the counter amino acid. In the current study, we attempted to rationalize roles of xCT in the livers of male mice. While xCT was not expressed in the livers of ordinary mice, it was induced under conditions of glutathione depletion, caused by the administration of acetaminophen (AAP). To differentiate the role between xCT and the transsulfuration pathway on the supply of Cys, we employed an inhibitor of the enzyme cystathionine γ-lyase, propargylglycine (PPG). This inhibitor caused a marked aggravation in AAP-induced hepatic damage and the mortality of the xCT−/− mice was increased to a greater extent than that for the xCT+/+ mice. While a PPG pretreatment had no effect on liver condition or Cys levels, the administration of AAP to the PPG-pretreated mice reduced the levels of Cys as well as glutathione to very low levels in both the xCT+/+ and xCT−/− mice. These findings indicate that the transsulfuration pathway plays a major role in replenishing Cys when glutathione levels are low. Moreover, an ascorbic acid insufficiency, induced by Akr1a ablation, further aggravated the AAP-induced liver damage in the case of the xCT deficiency, indicating that glutathione and ascorbic acid function cooperatively in protecting the liver. In conclusion, while the transsulfuration pathway plays a primary role in supplying Cys to the redox system in the liver, xCT is induced in cases of emergencies, by compensating for Cys supply systems.


Experimental Neurology | 2017

Zonisamide attenuates lactacystin-induced parkinsonism in mice without affecting system xc−

Eduard Bentea; Joeri Van Liefferinge; Lise Verbruggen; Katleen Martens; Sho Kobayashi; Lauren Deneyer; Thomas Demuyser; Giulia Albertini; Katrien Maes; Hideyo Sato; Ilse Smolders; Jan Lewerenz; Ann Massie

&NA; Zonisamide (ZNS), an anticonvulsant drug exhibiting symptomatic effects in Parkinsons disease (PD), was recently reported to exert neuroprotection in rodent models. One of the proposed neuroprotective mechanisms involves increased protein expression of xCT, the specific subunit of the cystine/glutamate antiporter system xc−, inducing glutathione (GSH) synthesis. Here, we investigated the outcome of ZNS treatment in a mouse model of PD based on intranigral proteasome inhibition, and whether the observed effects would be mediated by system xc−. The proteasome inhibitor lactacystin (LAC) was administered intranigrally to male C57BL/6J mice receiving repeated intraperitoneal injections of either ZNS 30 mg kg− 1 or vehicle. Drug administration was initiated three days prior to stereotaxic LAC injection and was maintained until six days post‐surgery. One week after lesion, mice were behaviorally assessed and investigated in terms of nigrostriatal neurodegeneration and molecular changes at the level of the basal ganglia, including expression levels of xCT. ZNS reduced the loss of nigral dopaminergic neurons following LAC injection and the degree of sensorimotor impairment. ZNS failed, however, to modulate xCT expression in basal ganglia of lesioned mice. In a separate set of experiments, the impact of ZNS treatment on system xc− was investigated in control conditions in vivo as well as in vitro. Similarly, ZNS did not influence xCT or glutathione levels in naive male C57BL/6J mice, nor did it alter system xc− activity or glutathione content in vitro. Taken together, these results demonstrate that ZNS treatment provides neuroprotection and behavioral improvement in a PD mouse model based on proteasome inhibition via system xc− independent mechanisms. HighlightsZNS decreases LAC‐induced nigral DA‐ergic neurodegeneration.ZNS reduces the degree of LAC‐induced sensorimotor dysfunction.ZNS does not influence the expression or activity of system xc−.


Scientific Reports | 2018

The ferroptosis inducer erastin irreversibly inhibits system x c − and synergizes with cisplatin to increase cisplatin’s cytotoxicity in cancer cells

Mami Sato; Ryosuke Kusumi; Shinji Hamashima; Sho Kobayashi; Satoru Sasaki; Yuhei Komiyama; T. Izumikawa; Marcus Conrad; Shiro Bannai; Hideyo Sato

System xc− was recently described as the most upstream node in a novel form of regulated necrotic cell death, called ferroptosis. In this context, the small molecule erastin was reported to target and inhibit system xc−, leading to cysteine starvation, glutathione depletion and consequently ferroptotic cell death. Although the inhibitory effect of erastin towards system xc− is well-documented, nothing is known about its mechanism of action. Therefore, we sought to interrogate in more detail the underlying mechanism of erastin’s pro-ferroptotic effects. When comparing with some well-known inhibitors of system xc−, erastin was the most efficient inhibitor acting at low micromolar concentrations. Notably, only a very short exposure of cells with low erastin concentrations was sufficient to cause a strong and persistent inhibition of system xc−, causing glutathione depletion. These inhibitory effects towards system xc− did not involve cysteine modifications of the transporter. More importantly, short exposure of tumor cells with erastin strongly potentiated the cytotoxic effects of cisplatin to efficiently eradicate tumor cells. Hence, our data suggests that only a very short pre-treatment of erastin suffices to synergize with cisplatin to efficiently induce cancer cell death, findings that might guide us in the design of novel cancer treatment paradigms.


Archives of Biochemistry and Biophysics | 2018

Unveiling systemic organ disorders associated with impaired lipid catabolism in fasted SOD1-deficient mice

Jaeyong Lee; Takujiro Homma; Sho Kobayashi; Naoki Ishii; Junichi Fujii

Oxidative stress triggers the formation of lipid droplets in the liver by stimulating lipogenesis and simultaneously suppresses lipoprotein secretion under hypernutritional conditions. Herein we report on the observation of systemic organ failure that is associated with lipid droplet accumulation in fasting, SOD1-knockout (KO) mice. Upon a three-day fasting period, the KO mice were observed to be vulnerable, could not be rescued by refeeding and had largely died, while wild-type mice were totally recovered. Visceral fat was rapidly consumed during fasting, which resulted in energy shortage and increased fatality in the KO mice. Lipid droplets had accumulated and continued to remain in KO mouse organs that routinely catalyze fatty acids via β-oxidation, even though the levels of free fatty acids and β-hydroxybutyrate, a ketone body, in blood plasma were less in KO mice compared to WT mice during the fasting period. The fasting-triggered organ failure in the KO mice was effectively mitigated by feeding a high calorie-diet for 2 weeks prior to fasting, even though the mice had an excessive accumulation of lipid droplets in the liver. These collective data suggest that the lipid-catabolizing system is the sensitive target of oxidative stress triggered by fasting conditions in the KO mice.


World Journal of Biological Chemistry | 2018

Mutual interaction between oxidative stress and endoplasmic reticulum stress in the pathogenesis of diseases specifically focusing on non-alcoholic fatty liver disease

Junichi Fujii; Takujiro Homma; Sho Kobayashi; Han Geuk Seo

Reactive oxygen species (ROS) are produced during normal physiologic processes with the consumption of oxygen. While ROS play signaling roles, when they are produced in excess beyond normal antioxidative capacity this can cause pathogenic damage to cells. The majority of such oxidation occurs in polyunsaturated fatty acids and sulfhydryl group in proteins, resulting in lipid peroxidation and protein misfolding, respectively. The accumulation of misfolded proteins in the endoplasmic reticulum (ER) is enhanced under conditions of oxidative stress and results in ER stress, which, together, leads to the malfunction of cellular homeostasis. Multiple types of defensive machinery are activated in unfolded protein response under ER stress to resolve this unfavorable situation. ER stress triggers the malfunction of protein secretion and is associated with a variety of pathogenic conditions including defective insulin secretion from pancreatic β-cells and accelerated lipid droplet formation in hepatocytes. Herein we use nonalcoholic fatty liver disease (NAFLD) as an illustration of such pathological liver conditions that result from ER stress in association with oxidative stress. Protecting the ER by eliminating excessive ROS via the administration of antioxidants or by enhancing lipid-metabolizing capacity via the activation of peroxisome proliferator-activated receptors represent promising therapeutics for NAFLD.


Toxicology Letters | 2018

Mice deficient in aldo-keto reductase 1a (Akr1a) are resistant to thioacetamide-induced liver injury

Takujiro Homma; Takaya Shirato; Ryusuke Akihara; Sho Kobayashi; Jaeyong Lee; Ken-ichi Yamada; Satoshi Miyata; Motoko Takahashi; Junichi Fujii

Aldehyde reductase (Akr1a) has been reported to be involved in detoxification of reactive aldehydes as well as in the synthesis of bioactive compounds such as ascorbic acid (AsA). Because Akr1a is expressed at high levels in the liver and is involved in xenobiotic metabolism, our objective was to investigate the hepato-protective role of Akr1a in a thioacetamide (TAA)-induced hepatotoxicity model using Akr1a-deficient (Akr1a-/-) mice. Wild-type (WT) and Akr1a-/- mice were injected intraperitoneally with TAA and the extent of liver injury in the acute phase was assessed. Intriguingly, the extent of TAA-induced liver damage was less in the Akr1a-/- mice than in the WT mice. Biomarkers for the ER stress-induced apoptosis pathway were markedly decreased in the livers of Akr1a-/- mice, whereas AsA levels in plasma did not change significantly in any of the mice. In the liver, TAA is converted to reactive metabolites such as TAA S-oxide and then to TAA S, S-dioxide via the action of CYP2E1. In Akr1a-/- mice, CYP2E1 activity was relatively lower than WT mice at the basal level, leading to reactive TAA metabolites being produced at lower levels after the TAA treatment. The levels of liver proteins that were modified with these metabolites were also lower in the Akr1a-/- mice than the WT mice after the TAA treatment. Furthermore, after a lethal dose of a TAA challenge, the WT mice all died within 36 h, whereas almost all of the Akr1a-/- mice survived. These collective results suggest that Akr1a-/- mice are resistant to TAA-induced liver injury, and it follows that the absence of Akr1a might modulate TAA bioactivation.

Collaboration


Dive into the Sho Kobayashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcus Conrad

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge