Shogo Minamikawa
Kobe University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shogo Minamikawa.
Genetics in Medicine | 2016
Natsuki Matsunoshita; Kandai Nozu; Akemi Shono; Yoshimi Nozu; Xue Jun Fu; Naoya Morisada; Naohiro Kamiyoshi; Hiromi Ohtsubo; Takeshi Ninchoji; Shogo Minamikawa; Tomohiko Yamamura; Koichi Nakanishi; Norishige Yoshikawa; Yuko Shima; Hiroshi Kaito; Kazumoto Iijima
Purpose:Phenotypic overlap exists among type III Bartter syndrome (BS), Gitelman syndrome (GS), and pseudo-BS/GS (p-BS/GS), which are clinically difficult to distinguish. We aimed to clarify the differences between these diseases, allowing accurate diagnosis based on their clinical features.Methods:A total of 163 patients with genetically defined type III BS (n = 30), GS (n = 90), and p-BS/GS (n = 43) were included. Age at diagnosis, sex, body mass index, estimated glomerular filtration rate, and serum and urine electrolyte concentrations were determined.Results:Patients with p-BS/GS were significantly older at diagnosis than those with type III BS and GS. Patients with p-BS/GS included a significantly higher percentage of women and had a lower body mass index and estimated glomerular filtration rate than did patients with GS. Although hypomagnesemia and hypocalciuria were predominant biochemical findings in patients with GS, 17 and 23% of patients with type III BS and p-BS/GS, respectively, also showed these abnormalities. Of patients with type III BS, GS, and p-BS/GS, 40, 12, and 63%, respectively, presented with chronic kidney disease.Conclusions:This study clarified the clinical differences between BS, GS, and p-BS/GS for the first time, which will help clinicians establish differential diagnoses for these three conditions.Genet Med 18 2, 180–188.
Clinical Journal of The American Society of Nephrology | 2016
Naohiro Kamiyoshi; Kandai Nozu; Xue Jun Fu; Naoya Morisada; Yoshimi Nozu; Ming Juan Ye; Aya Imafuku; Kenichiro Miura; Tomohiko Yamamura; Shogo Minamikawa; Akemi Shono; Takeshi Ninchoji; Ichiro Morioka; Koichi Nakanishi; Norishige Yoshikawa; Hiroshi Kaito; Kazumoto Iijima
BACKGROUND AND OBJECTIVES Alport syndrome comprises a group of inherited heterogeneous disorders involving CKD, hearing loss, and ocular abnormalities. Autosomal dominant Alport syndrome caused by heterozygous mutations in collagen 4A3 and/or collagen 4A4 accounts for <5% of patients. However, the clinical, genetic, and pathologic backgrounds of patients with autosomal dominant Alport syndrome remain unclear. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We conducted a retrospective analysis of 25 patients with genetically proven autosomal dominant Alport syndrome and their family members (a total of 72 patients) from 16 unrelated families. Patients with suspected Alport syndrome after pathologic examination who were referred from anywhere in Japan for genetic analysis from 2006 to 2015 were included in this study. Clinical, laboratory, and pathologic data were collected from medical records at the point of registration for genetic diagnosis. Genetic analysis was performed by targeted resequencing of 27 podocyte-related genes, including Alport-related collagen genes, to make a diagnosis of autosomal dominant Alport syndrome and identify modifier genes or double mutations. Clinical data were obtained from medical records. RESULTS The median renal survival time was 70 years, and the median age at first detection of proteinuria was 17 years old. There was one patient with hearing loss and one patient with ocular lesion. Among 16 patients who underwent kidney biopsy, three showed FSGS, and seven showed thinning without lamellation of the glomerular basement membrane. Five of 13 detected mutations were reported to be causative mutations for autosomal recessive Alport syndrome in previous studies. Two families possessed double mutations in both collagen 4A3 and collagen 4A4, but no modifier genes were detected among the other podocyte-related genes. CONCLUSIONS The renal phenotype of autosomal dominant Alport syndrome was much milder than that of autosomal recessive Alport syndrome or X-linked Alport syndrome in men. It may, thus, be difficult to make an accurate diagnosis of autosomal dominant Alport syndrome on the basis of clinical or pathologic findings. No modifier genes were identified among the known podocyte-related genes.
Kidney International Reports | 2017
Tomohiko Yamamura; Kandai Nozu; Xue Jun Fu; Yoshimi Nozu; Ming Juan Ye; Akemi Shono; Satoko Yamanouchi; Shogo Minamikawa; Naoya Morisada; Koichi Nakanishi; Yuko Shima; Norishige Yoshikawa; Takeshi Ninchoji; Ichiro Morioka; Hiroshi Kaito; Kazumoto Iijima
Introduction X-linked Alport syndrome (XLAS) is a hereditary disease characterized by progressive nephritis, hearing loss, and ocular abnormalities. Affected male patients usually progress to end-stage renal disease in early or middle adulthood, and disease severity is strongly correlated with genotype. However, the clinical course in female patients has rarely been reported. Methods We conducted a retrospective analysis of females with genetically proven XLAS (n = 275) and their affected female family members (n = 61) from 179 Japanese families. Patients suspected to have Alport syndrome from pathologic findings or a family history who were referred from anywhere in Japan for genetic diagnosis between 2006–2015 were included in this study. Clinical and laboratory data were collected from medical records at the time of registration for genetic analysis. Results Proteinuria was detected in 175 genetically proven patients (72.6%), and the median age for developing proteinuria was 7.0 years. Fifty-two of 336 patients developed end-stage renal disease with a median renal survival age of 65.0 years. No obvious genotype–phenotype correlation was observed. Additionally, targeted sequencing for podocyte-related genes in patients with severe phenotypes revealed no obvious variants considered to be modifier genes except for 1 patient with a COL4A3 gene variant. Discussion This study revealed that phenotypes in female XLAS patients may be severe, but genotype does not help to predict the disease severity. Clinicians must therefore pay careful attention to the clinical course and appropriate treatment in females with XLAS.
Journal of Human Genetics | 2017
Kandai Nozu; Yoshimi Nozu; Keita Nakanishi; Takao Konomoto; Tomoko Horinouchi; Akemi Shono; Naoya Morisada; Shogo Minamikawa; Tomohiko Yamamura; Junya Fujimura; Koichi Nakanishi; Takeshi Ninchoji; Hiroshi Kaito; Ichiro Morioka; Mariko Taniguchi-Ikeda; Igor Vorechovsky; Kazumoto Iijima
Gitelman syndrome (GS) is an autosomal recessive renal tubulopathy characterized by hypokalemic metabolic alkalosis with hypocalciuria and hypomagnesemia. GS clinical symptoms range from mild weakness to muscular cramps, paralysis or even sudden death as a result of cardiac arrhythmia. GS is caused by loss-of-function mutations in the solute carrier family 12 member 3 (SLC12A3) gene, but molecular mechanisms underlying such a wide range of symptoms are poorly understood. Here we report cryptic exon activation in SLC12A3 intron 12 in a clinically asymptomatic GS, resulting from an intronic mutation c.1669+297 T>G that created a new acceptor splice site. The cryptic exon was sandwiched between the L3 transposon upstream and a mammalian interspersed repeat downstream, possibly contributing to inclusion of the cryptic exon in mature transcripts. The mutation was identified by targeted next-generation sequencing of candidate genes in GS patients with missing pathogenic SLC12A3 alleles. Taken together, this work illustrates the power of next-generation sequencing to identify causal mutations in intronic regions in asymptomatic individuals at risk of developing potentially fatal disease complications, improving clinical management of these cases.
Clinical and Experimental Nephrology | 2016
Naohiro Kamiyoshi; Kandai Nozu; Yoshimichi Urahama; Natsuki Matsunoshita; Tomohiko Yamamura; Shogo Minamikawa; Takeshi Ninchoji; Naoya Morisada; Koichi Nakanishi; Hiroshi Kaito; Kazumoto Iijima
BackgroundAutosomal dominant hypocalcemia type 1 (ADH1) is a relatively rare endocrine disorder characterized by hypocalcemia and inadequate parathyroid hormone secretion. ADH is caused by activating mutations in the calcium-sensing receptor (CaSR) gene, CASR. CaSR plays a crucial role in calcium and magnesium homeostasis in the kidney. ADH may be accompanied by hypokalemia and metabolic alkalosis when it is classified as type V Bartter syndrome. However, the mechanism underlying hypokalemia in this disease is unclear.MethodsWe investigated a 33-year-old woman with hypocalcemia and hypoparathyroidism since childhood, whose mother also had hypocalcemia and hypoparathyroidism, but with no clinical symptoms. Blood examinations showed hypokalemia and metabolic alkalosis in the patient, but not her mother. We conducted mutation analysis and diuretic tests to clarify the patient’s and her mother’s diagnosis and to investigate the onset mechanism of hypokalemia in ADH1. We also determined the localization of CaSR in the kidney by immunohistochemistry.ResultsWe detected a known gain-of-function mutation in CASR in both the patient and her mother. Diuretic tests revealed a response to furosemide and no reaction to thiazide in the patient, although the mother responded well to both diuretics. CaSR co-localized with the Na+–Cl− cotransporter (NCCT) on distal tubular epithelial cells.ConclusionsThese results indicate that the NCCT in the distal convoluted tubule was secondarily affected in this patient. We conclude that the main pathogenesis of secondary hypokalemia in ADH1 in this patient was secondary NCCT dysfunction.
Molecular Genetics & Genomic Medicine | 2017
Kandai Nozu; Kazumoto Iijima; Toru Igarashi; Shiro Yamada; Jana Kralovicova; Yoshimi Nozu; Tomohiko Yamamura; Shogo Minamikawa; Ichiro Morioka; Takeshi Ninchoji; Hiroshi Kaito; Koichi Nakanishi; Igor Vorechovsky
Disease‐causing mutations that activate transposon‐derived exons without creating a new splice‐site consensus have been reported rarely, but they provided unique insights into our understanding of structural motifs required for inclusion of intronic sequences in mature transcripts.
Clinical and Experimental Nephrology | 2017
Tomohiko Yamamura; Naoya Morisada; Kandai Nozu; Shogo Minamikawa; Shingo Ishimori; Daisaku Toyoshima; Takeshi Ninchoji; Masato Yasui; Mariko Taniguchi-Ikeda; Ichiro Morioka; Koichi Nakanishi; Hisahide Nishio; Kazumoto Iijima
BackgroundNephronophthisis-related ciliopathies (NPHP-RC) are a frequent cause of renal failure for children and adolescents. Although diagnosing these diseases clinically is difficult, a comprehensive genetic screening approach of targeted resequencing can uncover the genetic background in this complicated family of diseases.MethodsWe studied three Japanese female patients with renal insufficiency from non-consanguineous parents. A renal biopsy for clinical reasons was not performed. Therefore, we did not know the diagnosis of these patients from a clinical aspect. We performed comprehensive genetic analysis using the TruSight One Sequencing Panel next generation sequencing technique.ResultsWe identified three different rare NPHP-RC variants in the following genes: SDCCAG8, MKKS, and WDR35. Patient 1 with SDCCAG8 homozygous deletions showed no ciliopathy-specific extrarenal manifestations, such as retinitis pigmentosa or polydactyly prior to genetic analysis. Patient 2 with a MKKS splice site homozygous mutation and a subsequent 39-amino acid deletion in the substrate-binding apical domain, had clinical symptoms of Bardet–Biedl syndrome. She and her deceased elder brother had severe renal insufficiency soon after birth. Patient 3 with a compound heterozygous WDR35 mutation had ocular coloboma and intellectual disability.ConclusionsOur results suggest that a comprehensive genetic screening system using target resequencing is useful and non-invasive for the diagnosis of patients with an unknown cause of pediatric end-stage renal disease.
Clinical and Experimental Nephrology | 2017
Tomoko Horinouchi; Kandai Nozu; Naohiro Kamiyoshi; Koichi Kamei; Hiroko Togawa; Yuko Shima; Yoshimichi Urahama; Tomohiko Yamamura; Shogo Minamikawa; Keita Nakanishi; Junya Fujimura; Ichiro Morioka; Takeshi Ninchoji; Hiroshi Kaito; Koichi Nakanishi; Kazumoto Iijima
BackgroundHereditary hypomagnesemia is difficult to diagnose accurately because of its rarity and the variety of causative genes. We established a flowchart for identifying responsible genes for hypomagnesemia, and we confirmed its diagnostic efficacy in patients with suspected inherited hypomagnesemia.MethodsWe established a flowchart and applied it to five index cases with suspected inherited hypomagnesemia. Direct sequence analysis was used to detect the causative gene variants in four cases, and targeted sequencing analysis using next-generation sequencing (NGS) of all causative genes for hypomagnesemia was used in one.ResultsExpected pathogenic variants were detected in the HNF1B, TRPM6, CLDN16, CASR, or SLC12A3 gene in all five cases. The results of all genetic analyses were consistent with the clinical diagnostic results using the flowchart.ConclusionsAccurate genetic diagnosis is crucial for estimating the prognosis, detecting complications in organs other than the kidneys, and for directing genetic counseling. The developed flowchart for identifying responsible genes for hypomagnesemia was useful for diagnosing inherited hypomagnesemia. In addition, NGS analysis will help to resolve clinical difficulties in making an accurate diagnosis and thus improve the diagnostic strategy for inherited hypomagnesemia.
Journal of The American Society of Nephrology | 2018
Tomoko Horinouchi; Kandai Nozu; Tomohiko Yamamura; Shogo Minamikawa; Takashi Omori; Keita Nakanishi; Junya Fujimura; Akira Ashida; Mineaki Kitamura; Mitsuhiro Kawano; Wataru Shimabukuro; Chizuko Kitabayashi; Aya Imafuku; Keiichi Tamagaki; Koichi Kamei; Kenjirou Okamoto; Shuichiro Fujinaga; Masafumi Oka; Toru Igarashi; Akinori Miyazono; Emi Sawanobori; Rika Fujimaru; Koichi Nakanishi; Yuko Shima; Masafumi Matsuo; Ming Juan Ye; Yoshimi Nozu; Naoya Morisada; Hiroshi Kaito; Kazumoto Iijima
BACKGROUND X-linked Alport syndrome (XLAS) is a progressive hereditary nephropathy caused by mutations in the COL4A5 gene. Genotype-phenotype correlation in male XLAS is relatively well established; relative to truncating mutations, nontruncating mutations exhibit milder phenotypes. However, transcript comparison between XLAS cases with splicing abnormalities that result in a premature stop codon and those with nontruncating splicing abnormalities has not been reported, mainly because transcript analysis is not routinely conducted in patients with XLAS. METHODS We examined transcript expression for all patients with suspected splicing abnormalities who were treated at one hospital between January of 2006 and July of 2017. Additionally, we recruited 46 males from 29 families with splicing abnormalities to examine genotype-phenotype correlation in patients with truncating (n=21, from 14 families) and nontruncating (n=25, from 15 families) mutations at the transcript level. RESULTS We detected 41 XLAS families with abnormal splicing patterns and described novel XLAS atypical splicing patterns (n=14) other than exon skipping caused by point mutations in the splice consensus sequence. The median age for developing ESRD was 20 years (95% confidence interval, 14 to 23 years) among patients with truncating mutations and 29 years (95% confidence interval, 25 to 40 years) among patients with nontruncating mutations (P=0.001). CONCLUSIONS We report unpredictable atypical splicing in the COL4A5 gene in male patients with XLAS and reveal that renal prognosis differs significantly for patients with truncating versus nontruncating splicing abnormalities. Our results suggest that splicing modulation should be explored as a therapy for XLAS with truncating mutations.
Clinical and Experimental Nephrology | 2018
China Nagano; Kandai Nozu; Naoya Morisada; Masahiko Yazawa; Daisuke Ichikawa; Keita Numasawa; Hiroyo Kourakata; Chieko Matsumura; Satoshi Tazoe; Ryojiro Tanaka; Tomohiko Yamamura; Shogo Minamikawa; Tomoko Horinouchi; Keita Nakanishi; Junya Fujimura; Nana Sakakibara; Yoshimi Nozu; Ming Juan Ye; Hiroshi Kaito; Kazumoto Iijima
BackgroundComprehensive genetic approaches for diagnosing inherited kidney diseases using next-generation sequencing (NGS) have recently been established. However, even with these approaches, we are still failing to detect gene defects in some patients who appear to suffer from genetic diseases. One of the reasons for this is the difficulty of detecting copy number variations (CNVs) using our current approaches. For such cases, we can apply methods of array-based comparative genomic hybridization (aCGH) or multiplex ligation and probe amplification (MLPA); however, these are expensive and laborious and also often fail to identify CNVs. Here, we report seven cases with CNVs in various inherited kidney diseases screened by NGS pair analysis.MethodsTargeted sequencing analysis for causative genes was conducted for cases with suspected inherited kidney diseases, for some of which a definitive genetic diagnosis had not been achieved. We conducted pair analysis using NGS data for those cases. When CNVs were detected by pair analysis, they were confirmed by aCGH and/or MLPA.ResultsIn seven cases, CNVs in various causative genes of inherited kidney diseases were detected by pair analysis. With aCGH and/or MLPA, pathogenic CNV variants were confirmed: COL4A5 or HNF1B in two cases each, and EYA1, CLCNKB, or PAX2 in one each.ConclusionWe presented seven cases with CNVs in various genes that were screened by pair analysis. The NGS-based CNV detection method is useful for comprehensive screening of CNVs, and our results revealed that, for a certain proportion of cases, CNV analysis is necessary for accurate genetic diagnosis.