Shoichiro Sugai
Japan Tobacco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shoichiro Sugai.
International Journal of Molecular Sciences | 2017
Keisuke Goda; Akio Kobayashi; Akemi Takahashi; Tadakazu Takahashi; Kosuke Saito; Keiko Maekawa; Yoshiro Saito; Shoichiro Sugai
In the development of drugs, we sometimes encounter fatty change of the hepatocytes (steatosis) which is not accompanied by degenerative change in the liver in non-clinical toxicity studies. In this study, we investigated the relationships between fatty change of the hepatocytes noted in non-clinical toxicity studies of compound X, a candidate compound in drug development, and mitochondrial dysfunction in order to estimate the potential risk of the compound to induce drug-induced liver injury (DILI) in humans. We conducted in vivo and in vitro exploratory studies for this purpose. In vivo lipidomics analysis was conducted to investigate the relationships between alteration of the hepatic lipids and mitochondrial dysfunction. In the liver of rats treated with compound X, triglycerides containing long-chain fatty acids, which are the main energy source of the mitochondria, accumulated. Accumulation of these triglycerides was considered to be related to the inhibition of mitochondrial respiration based on the results of in vitro mitochondria toxicity studies. In conclusion, fatty change of the hepatocytes (steatosis) in non-clinical toxicity studies of drug candidates can be regarded as a critical finding for the estimation of their potential risk to induce DILI in humans when the fatty change is induced by mitochondrial dysfunction.
Journal of Toxicological Sciences | 2016
Keisuke Goda; Tadakazu Takahashi; Akio Kobayashi; Toshiyuki Shoda; Hideyuki Kuno; Shoichiro Sugai
Drug-induced liver injury (DILI) is one of the serious and frequent drug-related adverse events. This adverse event is a main reason for regulatory action pertaining to drugs, including restrictions in clinical indications and withdrawal from clinical trials or the marketplace. Idiosyncratic DILI especially has become a major clinical concern because of its unpredictable nature, frequent hospitalization, need for liver transplantation and high mortality. The estimation of the potential for compounds to induce idiosyncratic DILI is very difficult in non-clinical studies because the precise mechanism of idiosyncratic DILI is still unknown. Recently, many in vitro assays which indicate a possibility of the prediction of the idiosyncratic DILI have been reported. Among these, some in vitro assays focus on the effects of compounds on mitochondrial function and the apoptotic effects of compounds on human hepatocytes. In this study, we measured oxygen consumption rate (OCR) and caspase-3/7 activity as an endpoint of mitochondrial dysfunction and apoptosis, respectively, with human hepatocytes after treatment with compounds causing idiosyncratic DILI (troglitazone, leflunomide, ranitidine and diclofenac). Troglitazone and leflunomide decreased the OCR but did not affect caspase-3/7 activity. Ranitidine increased caspase-3/7 activity but did not affect the OCR. Diclofenac decreased the OCR and increased caspase-3/7 activity. Acetaminophen and ethanol, which are also hepatotoxicants but do not induce idiosyncratic DILI, did not affect the OCR or caspase-3/7 activity. These results indicate that a combination assay of mitochondrial dysfunction and apoptosis is useful for the estimation of potential risk of compounds to induce idiosyncratic DILI.
Journal of Applied Toxicology | 2017
Kosuke Saito; Keisuke Goda; Akio Kobayashi; Naohito Yamada; Kyoko Maekawa; Yoshiro Saito; Shoichiro Sugai
Lipid profiling has emerged as an effective approach to not only screen disease and drug toxicity biomarkers but also understand their underlying mechanisms of action. Tamoxifen, a widely used antiestrogenic agent for adjuvant therapy against estrogen‐positive breast cancer, possesses side effects such as hepatic steatosis and phospholipidosis (PLD). In the present study, we administered tamoxifen to Sprague–Dawley rats and used lipidomics to reveal tamoxifen‐induced alteration of the hepatic lipid profile and its association with the plasma lipid profile. Treatment with tamoxifen for 28 days caused hepatic PLD in rats. We compared the plasma and liver lipid profiles in treated vs. untreated rats using a multivariate analysis to determine differences between the two groups. In total, 25 plasma and 45 liver lipids were identified and altered in the tamoxifen‐treated group. Of these lipids, arachidonic acid (AA)‐containing phosphatidylcholines (PCs), such as PC (17:0/20:4) and PC (18:1/20:4), were commonly reduced in both plasma and liver. Conversely, tamoxifen increased other phosphoglycerolipids in the liver, such as phosphatidylethanolamine (18:1/18:1) and phosphatidylinositol (18:0/18:2). We also examined alteration of AA‐containing PCs and some phosphoglycerolipids in the pre‐PLD stage and found that these lipid alterations were initiated before pathological alteration in the liver. In addition, changes in plasma and liver levels of AA‐containing PCs were linearly associated. Moreover, levels of free AA and mRNA levels of AA‐synthesizing enzymes, such as fatty acid desaturase 1 and 2, were decreased by tamoxifen treatment. Therefore, our study demonstrated that AA‐containing PCs might have potential utility as novel and predictive biomarkers for tamoxifen‐induced PLD. Copyright
Journal of Toxicological Sciences | 2018
Keisuke Goda; Kosuke Saito; Kyotaka Muta; Akio Kobayashi; Yoshiro Saito; Shoichiro Sugai
Valproic acid (VPA) is known to induce hepatic steatosis due to mitochondrial toxicity in rodents and humans. In the present study, we administered VPA to SD rats for 3 or 14 days at 250 and 500 mg/kg and then performed lipidomics analysis to reveal VPA-induced alteration of the hepatic lipid profile and its association with the plasma lipid profile. VPA induced hepatic steatosis at the high dose level without any degenerative changes in the liver on day 4 (after 3 days dosing) and at the low dose level on day 15 (after 14 days dosing). We compared the plasma and hepatic lipid profiles obtained on day 4 between the VPA-treated and control rats using a multivariate analysis to determine differences between the two groups. In total, 36 species of plasma lipids and 24 species of hepatic lipids were identified as altered in the VPA-treated group. Of these lipid species, ether-phosphatidylcholines (ePCs), including PC(16:0e/22:4) and PC(16:0e/22:6), were decreased in both the plasma and liver from the low dose level on day 4, however, neither an increase in hepatic TG level nor histopathological hepatic steatosis was observed at either dose level on day 4. Hepatic mRNA levels of glycerone-phosphate O-acyltransferase (Gnpat), which is a key enzyme for biosynthesis of ePC, was also decreased by treatment with VPA along with the decrease in ePCs. In conclusion, the changes in ePCs, (PC[16:0e/22:4] and PC[16:0e/22:6]), have potential utility as predictive biomarkers for VPA-induced hepatic steatosis.
Journal of Toxicological Sciences | 2018
Kaoru Toyoda; Yusuke Suzuki; Kyotaka Muta; Taku Masuyama; Kochi Kakimoto; Akio Kobayashi; Toshiyuki Shoda; Shoichiro Sugai
Diabetic nephropathy (DN) is one of the complications of diabetes and is now the most common cause of end-stage renal disease. Fructose is a simple carbohydrate that is present in fruits and honey and is used as a sweetener because of its sweet taste. Fructose has been reported to have the potential to progress diabetes and DN in humans even though fructose itself does not increase postprandial plasma glucose levels. In this study, we investigated the effects of high fructose intake on the kidney of the Spontaneously Diabetic Torii (SDT) rats which have renal lesions similar to those in DN patients and compared these with the effects in normal SD rats. This study revealed that a 4-week feeding of the high fructose diet increased urinary excretion of kidney injury makers for tubular injury and accelerated mainly renal tubular and interstitial lesions in the SDT rats but not in normal rats. The progression of the nephropathy in the SDT rats was considered to be related to increased internal uric acid and blood glucose levels due to the high fructose intake. In conclusion, high fructose intake exaggerated the renal lesions in the SDT rats probably due to effects on the tubules and interstitium through metabolic implications for uric acid and glucose.
Journal of Toxicological Sciences | 2018
Hideaki Yokoyama; Akio Kobayashi; Kazuma Kondo; Shin-ichi Oshida; Tadakazu Takahashi; Taku Masuyama; Toshiyuki Shoda; Shoichiro Sugai
Acyl CoA: diacylglycerol acyltransferase (DGAT) 1 is an enzyme that catalyzes the re-synthesis of triglycerides (TG) from free fatty acids and diacylglycerol. JTT-553 is a DGAT1 inhibitor and exhibits its pharmacological action (inhibition of re-synthesis of TG) in the enterocytes of the small intestine leading to suppression of a postprandial elevation of plasma lipids. After repeated oral dosing JTT-553 in rats and monkeys, plasma transaminase levels were increased but there were neither changes in other hepatic function parameters nor histopathological findings suggestive of hepatotoxicity. Based on the results of exploratory studies for investigation of the mechanism of the increase in transaminase levels, plasma transaminase levels were increased after dosing JTT-553 only when animals were fed after dosing and a main factor in the diet contributing to the increase in plasma transaminase levels was lipids. After dosing JTT-553, transaminase levels were increased in the small intestine but not in the liver, indicating that the origin of transaminase increased in the plasma was not the liver but the small intestine where JTT-553 exhibits its pharmacological action. The increase in small intestinal transaminase levels was due to increased enzyme protein synthesis and was suppressed by inhibiting fatty acid-transport to the enterocytes. In conclusion, the JTT-553-related increase in plasma transaminase levels is considered not to be due to release of the enzymes from injured cells into the circulation but to be phenomena resulting from enhancement of enzyme protein synthesis in the small intestine due to the pharmacological action of JTT-553 in this organ.
Journal of Toxicological Sciences | 2009
Akio Kobayashi; Yusuke Suzuki; Hideyuki Kuno; Shoichiro Sugai; Hiroyuki Sakakibara; Kayoko Shimoi
Journal of Toxicological Sciences | 2012
Kazuma Kondo; Naohito Yamada; Yusuke Suzuki; Kaoru Toyoda; Tatsuji Hashimoto; Akemi Takahashi; Akio Kobayashi; Toshiyuki Shoda; Hideyuki Kuno; Shoichiro Sugai
Journal of Toxicological Sciences | 2003
Akiko Kobayashi; Tadakazu Takahashi; Shoichiro Sugai; Yoshifumi Miyakawa; Hisashi Iwatsuka; Tokio Yamaguchi
Journal of Toxicological Sciences | 2011
Akio Kobayashi; Hideaki Yokoyama; Jiro Kataoka; Tomio Ishida; Hideyuki Kuno; Shoichiro Sugai; Hiroyuki Sakakibara; Kayoko Shimoi