Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shoji A. Baba is active.

Publication


Featured researches published by Shoji A. Baba.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization

Mayuko Jin; Eiji Fujiwara; Yasutaka Kakiuchi; Masaru Okabe; Yuhkoh Satouh; Shoji A. Baba; Kazuyoshi Chiba; Noritaka Hirohashi

To fuse with oocytes, spermatozoa of eutherian mammals must pass through extracellular coats, the cumulus cell layer, and the zona pellucida (ZP). It is generally believed that the acrosome reaction (AR) of spermatozoa, essential for zona penetration and fusion with oocytes, is triggered by sperm contact with the zona pellucida. Therefore, in most previous studies of sperm–oocyte interactions in the mouse, the cumulus has been removed before insemination to facilitate the examination of sperm–zona interactions. We used transgenic mouse spermatozoa, which enabled us to detect the onset of the acrosome reaction using fluorescence microscopy. We found that the spermatozoa that began the acrosome reaction before reaching the zona were able to penetrate the zona and fused with the oocytes plasma membrane. In fact, most fertilizing spermatozoa underwent the acrosome reaction before reaching the zona pellucida of cumulus-enclosed oocytes, at least under the experimental conditions we used. The incidence of in vitro fertilization of cumulus-free oocytes was increased by coincubating oocytes with cumulus cells, suggesting an important role for cumulus cells and their matrix in natural fertilization.


Journal of Cell Biology | 2005

Real-time analysis of the role of Ca2+ in flagellar movement and motility in single sea urchin sperm

Christopher D. Wood; Takuya Nishigaki; Toshiaki Furuta; Shoji A. Baba; Alberto Darszon

Eggs of many marine and mammalian species attract sperm by releasing chemoattractants that modify the bending properties of flagella to redirect sperm paths toward the egg. This process, called chemotaxis, is dependent on extracellular Ca2+. We used stroboscopic fluorescence imaging to measure intracellular Ca2+ concentration ([Ca2+]i) in the flagella of swimming sea urchin sperm. Uncaging of cyclic GMP induced Ca2+ entry via at least two distinct pathways, and we identified a nimodipine-sensitive pathway, compartmentalized in the flagella, as a key regulator of flagellar bending and directed motility changes. We found that, contrary to current models, the degree of flagellar bending does not vary in proportion to the overall [Ca2+]i. Instead we propose a new model whereby flagella bending is increased by Ca2+ flux through the nimodipine-sensitive pathway, and is unaffected by [Ca2+]i increases through alternative pathways.


The EMBO Journal | 2011

Regulation of interkinetic nuclear migration by cell cycle‐coupled active and passive mechanisms in the developing brain

Yoichi Kosodo; Taeko Suetsugu; Masumi Suda; Yuko Mimori-Kiyosue; Kazunori Toida; Shoji A. Baba; Akatsuki Kimura; Fumio Matsuzaki

A hallmark of neurogenesis in the vertebrate brain is the apical–basal nuclear oscillation in polarized neural progenitor cells. Known as interkinetic nuclear migration (INM), these movements are synchronized with the cell cycle such that nuclei move basally during G1‐phase and apically during G2‐phase. However, it is unknown how the direction of movement and the cell cycle are tightly coupled. Here, we show that INM proceeds through the cell cycle‐dependent linkage of cell‐autonomous and non‐autonomous mechanisms. During S to G2 progression, the microtubule‐associated protein Tpx2 redistributes from the nucleus to the apical process, and promotes nuclear migration during G2‐phase by altering microtubule organization. Thus, Tpx2 links cell‐cycle progression and autonomous apical nuclear migration. In contrast, in vivo observations of implanted microbeads, acute S‐phase arrest of surrounding cells and computational modelling suggest that the basal migration of G1‐phase nuclei depends on a displacement effect by G2‐phase nuclei migrating apically. Our model for INM explains how the dynamics of neural progenitors harmonize their extensive proliferation with the epithelial architecture in the developing brain.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Ca2+ bursts occur around a local minimal concentration of attractant and trigger sperm chemotactic response.

Kogiku Shiba; Shoji A. Baba; Takafumi Inoue; Manabu Yoshida

Ca2+ is known to have important roles in sperm chemotaxis, although the relationship between intracellular Ca2+ concentration ([Ca2+]i) and modulation of the swimming and chemotactic behavior of spermatozoa has not been elucidated. Using a high-speed Ca2+ imaging system, we examined the chemotactic behavior and [Ca2+]i in individual ascidian sperm cells exhibiting chemotactic responses toward sperm activating and attracting factor (SAAF), a chemoattractant released by eggs. In this study, we found that transient [Ca2+]i increased in the flagellum (Ca2+ bursts) concomitantly with a change in the swimming direction in an SAAF gradient field. During the initial phase of the Ca2+ bursts, the flagellum of the spermatozoon exhibited highly asymmetric waveforms enabling the quick turning of the swimming path. However, the flagellum subsequently changed to symmetric beating, causing the spermatozoon to swim straight. Interestingly, during such responses, [Ca2+]i remained higher than the basal level, indicating that the series of responses was not simply determined by Ca2+ concentrations. Also, we found that Ca2+ bursts were consistently evoked at points at which the spermatozoon attained around a temporally minimal value for a given SAAF concentration. We concluded that Ca2+ bursts induced around a local minimal SAAF concentration trigger a sequence of flagellar responses comprising quick turning followed by straight swimming to direct spermatozoa efficiently toward eggs.


BioTechniques | 2006

Stroboscopic illumination using light-emitting diodes reduces phototoxicity in fluorescence cell imaging

Takuya Nishigaki; Christopher D. Wood; Kogiku Shiba; Shoji A. Baba; Alberto Darszon

Excited fluorophores produce reactive oxygen species that are toxic toward many live cells (phototoxicity) and accelerate bleaching of the fluorophores during the course of extended or repeated measurements (photobleaching). We recently developed an illumination system for fluorescence microscopy using a high power light-emitting diode (LED), which can emit short pulses of light (0.5-2 ms) to excite fluorophores. This system minimizes illumination time, thus reducing phototoxicity and photobleaching artifacts. To demonstrate the usefulness of the new system, we compared images of human sperm loaded with various fluorescent indicators and excited with either a conventional mercury lamp as a continuous excitation light source or the LED as a source of pulsed illumination. We found that sperm motility decreased rapidly and photobleaching was relatively rapid under continuous illumination, whereas under pulsed LED illumination, motility was maintained and photobleaching was much reduced. Therefore, fluorescence microscopy using LED-based pulsed illumination offers significant advantages for long-term live cell imaging, reducing the degree of phototoxicity, and extending the effective lifetime of fluorophores.


The Biological Bulletin | 2001

Theoretical and Experimental Dissection of Gravity-Dependent Mechanical Orientation in Gravitactic Microorganisms

Yoshihiro Mogami; Junko Ishii; Shoji A. Baba

Mechanisms of gravitactic behaviors of aquatic microorganisms were investigated in terms of their mechanical basis of gravity-dependent orientation. Two mechanical mechanisms have been considered as possible sources of the orientation torque generated on the inert body. One results from the differential density within an organism (the gravity-buoyancy model) and the other from the geometrical asymmetry of an organism (the drag-gravity model). We first introduced a simple theory that distinguishes between these models by measuring sedimentation of immobilized organisms in a medium of higher density than that of the origanisms. Ni2+-immobilized cells of Paramecium caudatum oriented downwards while floating upwards in the Percoll-containing hyper-density medium but oriented upwards while sinking in the hypo-density control medium. This means that the orientation of Paramecium is mechanically biased by the torque generated mainly due to the anterior location of the reaction center of hydrodynamic stress relative to those of buoyancy and gravity; thus the torque results from the geometrical fore-aft asymmetry and is described by the drag-gravity model. The same mechanical property was demonstrated in gastrula larvae of the sea urchin by observing the orientation during sedimentation of the KCN-immobilized larvae in media of different density: like the paramecia, the gastrulae oriented upwards in hypo-density medium and downwards in hyper-density medium. Immobilized pluteus larvae, however, oriented upwards regardless of the density of the medium. This indicates that the orientation of the pluteus is biased by the torque generated mainly due to the posterior location of the reaction center of gravity relative to those of buoyancy and hydrodynamic stress; thus the torque results from the fore-aft asymmetry of the density distribution and is described by the gravity-buoyancy model. These observations indicate that, during development, sea urchin larvae change the mechanical mechanism for the gravitactic orientation. Evidence presented in the present paper demonstrates a definite relationship between the morphology and the gravitactic behavior of microorganisms.


Current Biology | 2013

Sperm from Sneaker Male Squids Exhibit Chemotactic Swarming to CO2

Noritaka Hirohashi; Luis Alvarez; Kogiku Shiba; Eiji Fujiwara; Yoko Iwata; Tatsuma Mohri; Kazuo Inaba; Kazuyoshi Chiba; Hiroe Ochi; Claudiu T. Supuran; Nico Kotzur; Yasutaka Kakiuchi; U. Benjamin Kaupp; Shoji A. Baba

Behavioral traits of sperm are adapted to the reproductive strategy that each species employs. In polyandrous species, spermatozoa often form motile clusters, which might be advantageous for competing with sperm from other males. Despite this presumed advantage for reproductive success, little is known about how sperm form such functional assemblies. Previously, we reported that males of the coastal squid Loligo bleekeri produce two morphologically different euspermatozoa that are linked to distinctly different mating behaviors. Consort and sneaker males use two distinct insemination sites, one inside and one outside the females body, respectively. Here, we show that sperm release a self-attracting molecule that causes only sneaker sperm to swarm. We identified CO2 as the sperm chemoattractant and membrane-bound flagellar carbonic anhydrase as its sensor. Downstream signaling results from the generation of extracellular H(+), intracellular acidosis, and recovery from acidosis. These signaling events elicit Ca(2+)-dependent turning behavior, resulting in chemotactic swarming. These results illuminate the bifurcating evolution of sperm underlying the distinct fertilization strategies of this species.


Zoological Science | 2005

Sperm-activating peptide induces asymmetric flagellar bending in sea urchin sperm.

Kogiku Shiba; Junko Ohmuro; Yoshihiro Mogami; Takuya Nishigaki; Christopher D. Wood; Alberto Darszon; Yoshiro Tatsu; Noboru Yumoto; Shoji A. Baba

Abstract Speract, a sperm-activating peptide (SAP) from sea urchin eggs, induces various sperm responses including a transient increase in the intracellular Ca2+ concentration. However, it has not been clarified how speract modulates sperm motility and whether it functions as a chemoattractant. To confirm the effect of speract on sperm motility, we observed the flagellar bending response to speract in sperm of Hemicentrotus pulcherrimus, in experiments using caged speract and a lighting system for a microscope newly developed with a power LED. We found that speract induces increases in curvature of swimming paths and changes flagellar bending shape to asymmetric. These facts show that speract directly regulates flagellar motility, and suggest that speract-induced increases in intracellular Ca2+ concentration play an actual role in regulation of the flagellar movement.


FEBS Letters | 2006

Roles of cAMP in regulating microtubule sliding and flagellar bending in demembranated hamster spermatozoa

Masashi Kinukawa; Shoji Oda; Yoshiyuki Shirakura; Masaki Okabe; Junko Ohmuro; Shoji A. Baba; Masao Nagata; Fugaku Aoki

To understand the mechanism regulating spermatozoa motility, it is important to investigate the mechanism regulating the conversion of microtubule sliding into flagellar bending. Therefore, we analyzed microtubule sliding and its conversion into flagellar bending using a demembranated spermatozoa model in which microtubule sliding and flagellar bending could be analyzed separately by treating the demembranated spermatozoa with and without dithiothreitol, respectively. Using this model, we examined the roles of cAMP and its target molecules in regulating flagellar bending and microtubule sliding. Although flagellar bending did not occur in the absence of cAMP, microtubule extrusion occurred without it, suggesting that cAMP is necessary for the conversion of microtubule sliding into flagellar bending, but not for microtubule sliding itself. The target of cAMP for regulating flagellar bending was not cAMP‐dependent protein kinase (PKA), since flagellar bending was still observed in the spermatozoa treated with a PKA‐specific inhibitor. Alternatively, the Epac/Rap pathway may be the target. Epac2 and Rap2 were detected in hamster spermatozoa using immunoblotting. Since Rap2 is a GTPase, we investigated the flagellar bending of demembranated spermatozoa treated with GTPγS. The treatment markedly increased the beat frequency and bending rate. These results suggest that cAMP activates the Epac/Rap pathway to regulate the conversion of microtubule sliding into flagellar bending.


The Journal of Experimental Biology | 2004

Bioconvective pattern formation of Tetrahymena under altered gravity

Yoshihiro Mogami; Akiko Yamane; Atsuko Gino; Shoji A. Baba

SUMMARY Bioconvection is a result of the negative gravitactic behavior of microorganisms. When the top-heavy density gradient generated by gravitaxis grows sufficiently large, an overturning convection occurs leading to a formation of characteristic patterns, which involve highly concentrated aggregation of cells into extended two-dimensional structures. Although gravity is a crucial factor, few experiments have been done with reference to gravity as an experimental variable. In order to gain an insight into the hydrodynamic as well as biological dependence of the convective motion on gravity, we investigated changes in bioconvective patterns of Tetrahymena under altered gravity acceleration generated by a long-arm centrifuge. Bioconvective patterns recorded of three different cell strains (T. pyriformis, T. thermophila and its behavioral mutant, TNR) were analyzed quantitatively using space-time plot and Fourier analysis. For example, under subcritical conditions, when T. pyriformis (1.0×106 cells ml-1) was placed in a 2 mm-deep chamber, no spatial pattern was observed at 1 g. When the suspension was centrifuged, however, patterns began to appear as acceleration increased over a critical value (1.5 g), and then remained steady. The formation was reversible, i.e. the patterns disappeared again as acceleration decreased. Under supracritical conditions, i.e. when a suspension of the same density was placed in a 4 mm-deep chamber, a steady state pattern was formed at 1 g. The pattern spacing in the steady state was observed to decrease stepwise in response to step increases in acceleration. Fourier analysis demonstrated that for TNR the mean wave number changed almost simultaneously with step changes in acceleration, whereas the responses were less sharp in the wild-type strains. This may suggest that the locomotor phenotype of the cell, such as its avoiding response ability, has a crucial role in bioconvective pattern formation. These findings are discussed in relation to former theoretical studies.

Collaboration


Dive into the Shoji A. Baba's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Darszon

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Christopher D. Wood

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Takuya Nishigaki

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge