Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shoji Kawamura is active.

Publication


Featured researches published by Shoji Kawamura.


American Journal of Human Genetics | 2009

A Common Variation in EDAR Is a Genetic Determinant of Shovel-Shaped Incisors

Ryosuke Kimura; Tetsutaro Yamaguchi; Mayako Takeda; Osamu Kondo; Takashi Toma; Kuniaki Haneji; Tsunehiko Hanihara; Hirotaka Matsukusa; Shoji Kawamura; Koutaro Maki; Motoki Osawa; Hajime Ishida; Hiroki Oota

Shovel shape of upper incisors is a common characteristic in Asian and Native American populations but is rare or absent in African and European populations. Like other common dental traits, genetic polymorphisms involved in the tooth shoveling have not yet been clarified. In ectodysplasin A receptor (EDAR), where dysfunctional mutations cause hypohidrotic ectodermal dysplasia, there is a nonsynonymous-derived variant, 1540C (rs3827760), that has a geographic distribution similar to that of the tooth shoveling. This allele has been recently reported to be associated with Asian-specific hair thickness. We aimed to clarify whether EDAR 1540C is also associated with dental morphology. For this purpose, we measured crown diameters and tooth-shoveling grades and analyzed the correlations between the dental traits and EDAR genotypes in two Japanese populations, inhabitants around Tokyo and in Sakishima Islands. The number of EDAR 1540C alleles in an individual was strongly correlated with the tooth-shoveling grade (p = 7.7 x 10(-10)). The effect of the allele was additive and explained 18.9% of the total variance in the shoveling grade, which corresponds to about one-fourth of the heritability of the trait reported previously. For data reduction of individual-level metric data, we applied a principal-component analysis, which yielded PC1-4, corresponding to four patterns of tooth size; this result implies that multiple factors are involved in dental morphology. The 1540C allele also significantly affected PC1 (p = 4.9 x 10(-3)), which denotes overall tooth size, and PC2 (p = 2.6 x 10(-3)), which denotes the ratio of mesiodistal diameter to buccolingual diameter.


The Journal of Experimental Biology | 2005

Temporal and spatial changes in the expression pattern of multiple red and green subtype opsin genes during zebrafish development

Masaki Takechi; Shoji Kawamura

SUMMARY Zebrafish have two red, LWS-1 and LWS-2, and four green, RH2-1, RH2-2, RH2-3 and RH2-4, opsin genes encoding photopigments with distinct absorption spectra. Occurrence of opsin subtypes by gene duplication is characteristic of fish but little is known whether the subtypes are expressed differently in the retina, either spatially or temporally. Here we show by in situ hybridization the dynamic expression patterns of the opsin subtypes in the zebrafish retina. Expression of red type opsins is initiated with the shorter-wavelength subtype LWS-2, followed by the longer-wavelength subtype LWS-1. In the adult retina, LWS-2 was expressed in the central to dorsal area and LWS-1 in the ventral and peripheral areas. Expression patterns of green type opsins were similar to those of the red type opsins. The expression started with the shortest wavelength subtype RH2-1 followed by the longer wavelength ones, and in the adult retina, the shorter wavelength subtypes (RH2-1 and RH2-2) were expressed in the central to dorsal area and longer wavelength subtypes (RH2-3 and RH2-4) in the ventral and peripheral areas. These results provide the framework for subsequent studies of opsin gene regulation and for probing functional rationale of the developmental changes by using the power of zebrafish genetics.


Vision Research | 1998

Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis)

Shoji Kawamura; Shozo Yokoyama

Using only 11-cis 3, 4-dehydroretinal as a chromophore in the pure-cone retina, American chameleon (Anolis carolinensis) detects a wide range of color from ultraviolet (UV) to infrared. We previously characterized its visual opsin genes sws1Ac, sws2Ac, rh1Ac, rh2Ac, and LwsAc that encode SWS1Ac, SWS2Ac, RH1Ac, RH2Ac, and LWSAc opsins, respectively, and the pineal gland-specific opsin (PAc) gene. Here we present the light absorption profiles of the visual pigments obtained by expressing these opsins and reconstituting them with 11-cis retinal using the COS1 cell cDNA expression system. The purified SWS1Ac, SWS2Ac, RH1Ac, RH2Ac, LWSAc, and PAc pigments have the wavelengths of maximal absorption at 358, 437, 491, 495, 560, and 482 nm, respectively. SWS1Ac is the first vertebrate UV opsin whose spectral sensitivity has been directly evaluated. RH1 pigments, orthologous to the rod pigments of other vertebrates, are sensitive to hydroxylamine in the dark, exhibiting a cone pigment-like characteristic, probably reflecting their adaptation to the pure cone retina. Interestingly, the blue-sensitive SWS2Ac pigment shows an exceptionally low level of sensitivity to hydroxylamine, possessing a rod pigment-like characteristic.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Assembly of the cnidarian camera-type eye from vertebrate-like components

Zbynek Kozmik; Jana Ruzickova; Kristyna Jonasova; Yoshifumi Matsumoto; Pavel Vopalensky; Iryna Kozmikova; Hynek Strnad; Shoji Kawamura; Joram Piatigorsky; Václav Pačes; Čestmír Vlček

Animal eyes are morphologically diverse. Their assembly, however, always relies on the same basic principle, i.e., photoreceptors located in the vicinity of dark shielding pigment. Cnidaria as the likely sister group to the Bilateria are the earliest branching phylum with a well developed visual system. Here, we show that camera-type eyes of the cubozoan jellyfish, Tripedalia cystophora, use genetic building blocks typical of vertebrate eyes, namely, a ciliary phototransduction cascade and melanogenic pathway. Our findings indicative of parallelism provide an insight into eye evolution. Combined, the available data favor the possibility that vertebrate and cubozoan eyes arose by independent recruitment of orthologous genes during evolution.


Animal Behaviour | 2007

Effects of colour vision phenotype on insect capture by a free-ranging population of white-faced capuchins, Cebus capucinus

Amanda D. Melin; Linda M. Fedigan; Chihiro Hiramatsu; Courtney L. Sendall; Shoji Kawamura

Unlike most eutherian mammals, which have dichromatic (two-colour) vision, most platyrrhine primate species have polymorphic colour vision. This unique characteristic is enabled via multiple alleles for a midto long-wavelength-sensitive (M/LWS), single-locus opsin gene on the X chromosome. In combination with the autosomal opsin common to most vertebrates, this arrangement provides heterozygous females with trichromatic (three-colour) vision, whereas homozygous females and males are dichromats. Trichromatic vision enables visual differentiation among longer-wavelength colours, such as red, orange, yellow and green. Currently, many researchers attribute the evolution and maintenance of polymorphic colour vision to trichromat (¼ heterozygote) advantage. However, dichromacy may be more suited for achromatic tasks, such as penetrating colour camouflage, especially under low-light conditions. We evaluated whether dichromatic capuchin monkeys (Cebus capucinus) were more efficient than trichromatic monkeys at capturing camouflaged and noncamouflaged insects. Through faecal DNA analysis, we determined the genotypes of the M/LWS opsins for 34 capuchins in two groups inhabiting Santa Rosa National Park, Costa Rica. Dichromatic monkeys were more efficient at detecting camouflaged, surface-dwelling insects, especially under conditions of low ambient light. However, unexpectedly, trichromats were more efficient in extracting embedded, noncamouflaged insects from substrates. To our knowledge, this is the first study to document a foraging advantage to dichromatic monkeys in the wild. Our findings show that there is a lack of heterozygote advantage in foraging for surface-dwelling insects and therefore indicate that this mechanism may not be the sole driving force maintaining polymorphic colour vision in this population.


FEBS Letters | 1998

REGENERATION OF ULTRAVIOLET PIGMENTS OF VERTEBRATES

Shozo Yokoyama; F.Bernhard Radlwimmer; Shoji Kawamura

We report here the regeneration of the visual pigments of mouse, rat, goldfish and pigeon, which have wavelengths of maximal absorption at 359 nm, 358 nm, 359 nm, and 393 nm, respectively. The construction and functional assays of the ultraviolet or near‐ultraviolet pigments from a wide range of vertebrate species will allow us to study the molecular bases of ultraviolet vision for the first time.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Cone photoreceptor types in zebrafish are generated by symmetric terminal divisions of dedicated precursors

Sachihiro C. Suzuki; Adam Bleckert; Philip R. Williams; Masaki Takechi; Shoji Kawamura; Rachel Wong

Significance Color vision requires multiple types of cone photoreceptors, each with peak sensitivity to a specific wavelength. How different cone types are generated in vivo is not clear. We show that there are precursor cells individually dedicated to producing a single cone type. We tracked cone genesis in vivo in transgenic zebrafish in which red cones and their progenitors express fluorescent protein driven by the thyroid hormone receptor β2 promoter. We discovered that red cones are generated by symmetric terminal divisions of a red-cone precursor. Moreover, UV, blue, and green cones also have their own dedicated precursors. Thyroid hormone receptor β2 expression in cone precursors is required to produce pure red cones, whereas expression after cell division results in cones with mixed opsins. Proper functioning of sensory systems requires the generation of appropriate numbers and proportions of neuronal subtypes that encode distinct information. Perception of color relies on signals from multiple cone photoreceptor types. In cone-dominated retinas, each cone expresses a single opsin type with peak sensitivity to UV, long (L) (red), medium (M) (green), or short (S) (blue) wavelengths. The modes of cell division generating distinct cone types are unknown. We report here a mechanism whereby zebrafish cone photoreceptors of the same type are produced by symmetric division of dedicated precursors. Transgenic fish in which the thyroid hormone receptor β2 (trβ2) promoter drives fluorescent protein expression before L-cone precursors themselves are produced permitted tracking of their division in vivo. Every L cone in a local region resulted from the terminal division of an L-cone precursor, suggesting that such divisions contribute significantly to L-cone production. Analysis of the fate of isolated pairs of cones and time-lapse observations suggest that other cone types can also arise by symmetric terminal divisions. Such divisions of dedicated precursors may help to rapidly attain the final numbers and proportions of cone types (L > M, UV > S) in zebrafish larvae. Loss- and gain-of-function experiments show that L-opsin expression requires trβ2 activity before cone differentiation. Ectopic expression of trβ2 after cone differentiation produces cones with mixed opsins. Temporal differences in the onset of trβ2 expression could explain why some species have mixed, and others have pure, cone types.


Vision Research | 1997

Expression of visual and nonvisual opsins in American chameleon

Shoji Kawamura; Shozo Yokoyama

We previously characterized five visual opsin genes of American chameleon (Anolis carolinensis). Here we report its nonvisual opsin gene orthologous to the chicken pineal gland-specific opsin (p-opsin) gene. In the pure-cone American chameleon retina, all visual opsins including rod opsin are expressed. In both pineal and parietal eye, three visual opsins as well as P-opsin are expressed. Although opsins are detected in the pineal glands of a wide variety of vertebrates, Southern analysis suggests that the P-opsin gene is used mainly by birds and reptiles.


FEBS Letters | 2003

Fluorescence visualization of ultraviolet‐sensitive cone photoreceptor development in living zebrafish

Masaki Takechi; Takanori Hamaoka; Shoji Kawamura

Cone photoreceptor cells of fish retinae are arranged in a highly organized fashion. However, the molecular mechanisms underlying photoreceptor development and retinal pattern formation are largely unknown. Here we established transgenic lines of zebrafish carrying green fluorescent protein (GFP) cDNA with the 5.5‐kb upstream region of the ultraviolet‐sensitive cone opsin gene (SWS1). In the transgenic fish, GFP gene expression proceeded in the same spatiotemporal pattern as SWS1 in the retinae of embryos. In the adult retina, GFP expression was observed throughout the short single cone (SSC) layer where SWS1 is specifically expressed. Therefore, the transgenic fish provides an excellent genetic background to study retinal pattern formation, photoreceptor determination and differentiation, and factors regulating these processes and SSC‐specific expression of SWS1.


The Journal of Comparative Neurology | 2010

Ontogeny of cone photoreceptor mosaics in zebrafish.

W. Ted Allison; Linda K. Barthel; Kristina M. Skebo; Masaki Takechi; Shoji Kawamura; Pamela A. Raymond

Cone photoreceptors in fish are typically arranged into a precise, reiterated pattern known as a “cone mosaic.” Cone mosaic patterns can vary in different fish species and in response to changes in habitat, yet their function and the mechanisms of their development remain speculative. Zebrafish (Danio rerio) have four cone subtypes arranged into precise rows in the adult retina. Here we describe larval zebrafish cone patterns and investigate a previously unrecognized transition between larval and adult cone mosaic patterns. Cone positions were determined in transgenic zebrafish expressing green fluorescent protein (GFP) in their UV‐sensitive cones, by the use of multiplex in situ hybridization labelling of various cone opsins. We developed a “mosaic metric” statistical tool to measure local cone order. We found that ratios of the various cone subtypes in larval and adult zebrafish were statistically different. The cone photoreceptors in larvae form a regular heterotypic mosaic array; i.e., the position of any one cone spectral subtype relative to the other cone subtypes is statistically different from random. However, the cone spectral subtypes in larval zebrafish are not arranged in continuous rows as in the adult. We used cell birth dating to show that the larval cone mosaic pattern remains as a distinct region within the adult retina and does not reorganize into the adult row pattern. In addition, the abundance of cone subtypes relative to other subtypes is different in this larval remnant compared with that of larvae or canonical adult zebrafish retina. These observations provide baseline data for understanding the development of cone mosaics via comparative analysis of larval and adult cone development in a model species. J. Comp. Neurol. 518:4182–4195, 2010.

Collaboration


Dive into the Shoji Kawamura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda M. Fedigan

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda M. Fedigan

Liverpool John Moores University

View shared research outputs
Researchain Logo
Decentralizing Knowledge