Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shoji Sugano is active.

Publication


Featured researches published by Shoji Sugano.


The Plant Cell | 2007

Rice WRKY45 Plays a Crucial Role in Benzothiadiazole-Inducible Blast Resistance

Masaki Shimono; Shoji Sugano; Akira Nakayama; Chang-Jie Jiang; Kazuko Ono; Seiichi Toki; Hiroshi Takatsuji

Benzothiadiazole (BTH) is a so-called plant activator and protects plants from diseases by activating the salicylic acid (SA) signaling pathway. By microarray screening, we identified BTH- and SA-inducible WRKY transcription factor (TF) genes that were upregulated within 3 h after BTH treatment. Overexpression of one of them, WRKY45, in rice (Oryza sativa) markedly enhanced resistance to rice blast fungus. RNA interference–mediated knockdown of WRKY45 compromised BTH-inducible resistance to blast disease, indicating that it is essential for BTH-induced defense responses. In a transient expression system, WRKY45 activated reporter gene transcription through W-boxes. Epistasis analysis suggested that WRKY45 acts in the SA signaling pathway independently of NH1, a rice ortholog of Arabidopsis thaliana NPR1, which distinguishes WRKY45 from known Arabidopsis WRKY TFs. Two defense-related genes, encoding a glutathione S-transferase and a cytochrome P450, were found to be regulated downstream of WRKY45 but were not regulated by NH1, consistent with the apparent independence of the WRKY45- and NH1-dependent pathways. Defense gene expression in WRKY45-overexpressed rice plants varied with growth conditions, suggesting that some environmental factor(s) acts downstream of WRKY45 transcription. We propose a role for WRKY45 in BTH-induced and SA-mediated defense signaling in rice and its potential utility in improving disease resistance of rice, an importance food resource worldwide.


Molecular Plant-microbe Interactions | 2010

Abscisic Acid Interacts Antagonistically with Salicylic Acid Signaling Pathway in Rice–Magnaporthe grisea Interaction

Chang-Jie Jiang; Masaki Shimono; Shoji Sugano; Mikiko Kojima; Katsumi Yazawa; Riichiro Yoshida; Haruhiko Inoue; Nagao Hayashi; Hitoshi Sakakibara; Hiroshi Takatsuji

Plant hormones play pivotal signaling roles in plant-pathogen interactions. Here, we report characterization of an antagonistic interaction of abscisic acid (ABA) with salicylic acid (SA) signaling pathways in the rice-Magnaporthe grisea interaction. Exogenous application of ABA drastically compromised the rice resistance to both compatible and incompatible M. grisea strains, indicating that ABA negatively regulates both basal and resistance gene-mediated blast resistance. ABA markedly suppressed the transcriptional upregulation of WRKY45 and OsNPR1, the two key components of the SA signaling pathway in rice, induced by SA or benzothiadiazole or by blast infection. Overexpression of OsNPR1 or WRKY45 largely negated the enhancement of blast susceptibility by ABA, suggesting that ABA acts upstream of WRKY45 and OsNPR1 in the rice SA pathway. ABA-responsive genes were induced during blast infection in a pattern reciprocal to those of WRKY45 and OsPR1b in the compatible rice-blast interaction but only marginally in the incompatible one. These results suggest that the balance of SA and ABA signaling is an important determinant for the outcome of the rice-M. grisea interaction. ABA was detected in hyphae and conidia of M. grisea as well as in culture media, implying that blast-fungus-derived ABA could play a role in triggering ABA signaling at host infection sites.


Trends in Plant Science | 2000

All in good time: the Arabidopsis circadian clock.

Simon Barak; Elaine M. Tobin; Christos Andronis; Shoji Sugano; Rachel M. Green

Biological time-keeping mechanisms have fascinated researchers since the movement of leaves with a daily rhythm was first described >270 years ago. The circadian clock confers a approximately 24-hour rhythm on a range of processes including leaf movements and the expression of some genes. Molecular mechanisms and components underlying clock function have been described in recent years for several animal and prokaryotic organisms, and those of plants are beginning to be characterized. The emerging model of the Arabidopsis clock has mechanistic parallels with the clocks of other model organisms, which consist of positive and negative feedback loops, but the molecular components appear to be unique to plants.


Journal of Experimental Botany | 2013

WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance

Naoki Yokotani; Yuko Sato; Shigeru Tanabe; Tetsuya Chujo; Takafumi Shimizu; Kazunori Okada; Hisakazu Yamane; Masaki Shimono; Shoji Sugano; Hiroshi Takatsuji; Hisatoshi Kaku; Eiichi Minami; Yoko Nishizawa

OsWRKY76 encodes a group IIa WRKY transcription factor of rice. The expression of OsWRKY76 was induced within 48h after inoculation with rice blast fungus (Magnaporthe oryzae), and by wounding, low temperature, benzothiadiazole, and abscisic acid. Green fluorescent protein-fused OsWRKY76 localized to the nuclei in rice epidermal cells. OsWRKY76 showed sequence-specific DNA binding to the W-box element in vitro and exhibited W-box-mediated transcriptional repressor activity in cultured rice cells. Overexpression of OsWRKY76 in rice plants resulted in drastically increased susceptibility to M. oryzae, but improved tolerance to cold stress. Microarray analysis revealed that overexpression of OsWRKY76 suppresses the induction of a specific set of PR genes and of genes involved in phytoalexin synthesis after inoculation with blast fungus, consistent with the observation that the levels of phytoalexins in the transgenic rice plants remained significantly lower than those in non-transformed control plants. Furthermore, overexpression of OsWRKY76 led to the increased expression of abiotic stress-associated genes such as peroxidase and lipid metabolism genes. These results strongly suggest that OsWRKY76 plays dual and opposing roles in blast disease resistance and cold tolerance.


Molecular Plant Pathology | 2012

Rice WRKY45 plays important roles in fungal and bacterial disease resistance

Masaki Shimono; Hironori Koga; Aya Akagi; Nagao Hayashi; Shingo Goto; Miyuki Sawada; Takayuki Kurihara; Akane Matsushita; Shoji Sugano; Chang-Jie Jiang; Hisatoshi Kaku; Haruhiko Inoue; Hiroshi Takatsuji

Plant activators, such as benzothiadiazole (BTH), protect plants from various diseases by priming the plant salicylic acid (SA) signalling pathway. We have reported previously that a transcription factor identified in rice, WRKY45 (OsWRKY45), plays a pivotal role in BTH-induced disease resistance by mediating SA signalling. Here, we report further functional characterization of WRKY45. Different plant activators vary in their action points, either downstream (BTH and tiadinil) or upstream (probenazole) of SA. Rice resistance to Magnaporthe grisea, induced by both types of plant activator, was markedly reduced in WRKY45-knockdown (WRKY45-kd) rice, indicating a universal role for WRKY45 in chemical-induced resistance. Fungal invasion into rice cells was blocked at most attempted invasion sites (pre-invasive defence) in WRKY45-overexpressing (WRKY45-ox) rice. Hydrogen peroxide accumulated within the cell wall underneath invading fungus appressoria or between the cell wall and the cytoplasm, implying a possible role for H(2)O(2) in pre-invasive defence. Moreover, a hypersensitive reaction-like reaction was observed in rice cells, in which fungal growth was inhibited after invasion (post-invasive defence). The two levels of defence mechanism appear to correspond to Type I and II nonhost resistances. The leaf blast resistance of WRKY45-ox rice plants was much higher than that of other known blast-resistant varieties. WRKY45-ox plants also showed strong panicle blast resistance. BTH-induced resistance to Xanthomonas oryzae pv. oryzae was compromised in WRKY45-kd rice, whereas WRKY45-ox plants were highly resistant to this pathogen. However, WRKY45-ox plants were susceptible to Rhizoctonia solani. These results indicate the versatility and limitations of the application of this gene.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein–protein interaction

Haruhiko Inoue; Nagao Hayashi; Akane Matsushita; Liu Xinqiong; Akira Nakayama; Shoji Sugano; Chang-Jie Jiang; Hiroshi Takatsuji

Panicle blast 1 (Pb1) is a panicle blast resistance gene derived from the indica rice cultivar “Modan.” Pb1 encodes a coiled-coil–nucleotide-binding site–leucine-rich repeat (CC-NB-LRR) protein and confers durable, broad-spectrum resistance to Magnaporthe oryzae races. Here, we investigated the molecular mechanisms underlying Pb1-mediated blast resistance. The Pb1 protein interacted with WRKY45, a transcription factor involved in induced resistance via the salicylic acid signaling pathway that is regulated by the ubiquitin proteasome system. Pb1-mediated panicle blast resistance was largely compromised when WRKY45 was knocked down in a Pb1-containing rice cultivar. Leaf-blast resistance by Pb1 overexpression (Pb1-ox) was also compromised in WRKY45 knockdown/Pb1-ox rice. Blast infection induced higher accumulation of WRKY45 in Pb1-ox than in control Nipponbare rice. Overexpression of Pb1-Quad, a coiled-coil domain mutant that had weak interaction with WRKY45, resulted in significantly weaker blast resistance than that of wild-type Pb1. Overexpression of Pb1 with a nuclear export sequence failed to confer blast resistance to rice. These results suggest that the blast resistance of Pb1 depends on its interaction with WRKY45 in the nucleus. In a transient system using rice protoplasts, coexpression of Pb1 enhanced WRKY45 accumulation and increased WRKY45-dependent transactivation activity, suggesting that protection of WRKY45 from ubiquitin proteasome system degradation is possibly involved in Pb1-dependent blast resistance.


Plant Journal | 2009

Systematic approaches to using the FOX hunting system to identify useful rice genes.

Youichi Kondou; Mieko Higuchi; Shinya Takahashi; Tetsuya Sakurai; Takanari Ichikawa; Hirofumi Kuroda; Takeshi Yoshizumi; Yuko Tsumoto; Yoko Horii; Mika Kawashima; Yukako Hasegawa; Tomoko Kuriyama; Keiko Matsui; Miyako Kusano; Doris Albinsky; Hideki Takahashi; Yukiko Nakamura; Makoto Suzuki; Hitoshi Sakakibara; Mikiko Kojima; Kenji Akiyama; Atsushi Kurotani; Motoaki Seki; Miki Fujita; Akiko Enju; Naoki Yokotani; Tsutomu Saitou; Kozue Ashidate; Naka Fujimoto; Yasuo Ishikawa

Ectopic gene expression, or the gain-of-function approach, has the advantage that once the function of a gene is known the gene can be transferred to many different plants by transformation. We previously reported a method, called FOX hunting, that involves ectopic expression of Arabidopsis full-length cDNAs in Arabidopsis to systematically generate gain-of-function mutants. This technology is most beneficial for generating a heterologous gene resource for analysis of useful plant gene functions. As an initial model we generated more than 23,000 independent Arabidopsis transgenic lines that expressed rice fl-cDNAs (Rice FOX Arabidopsis lines). The short generation time and rapid and efficient transformation frequency of Arabidopsis enabled the functions of the rice genes to be analyzed rapidly. We screened rice FOX Arabidopsis lines for alterations in morphology, photosynthesis, element accumulation, pigment accumulation, hormone profiles, secondary metabolites, pathogen resistance, salt tolerance, UV signaling, high light tolerance, and heat stress tolerance. Some of the mutant phenotypes displayed by rice FOX Arabidopsis lines resulted from the expression of rice genes that had no homologs in Arabidopsis. This result demonstrated that rice fl-cDNAs could be used to introduce new gene functions in Arabidopsis. Furthermore, these findings showed that rice gene function could be analyzed by employing Arabidopsis as a heterologous host. This technology provides a framework for the analysis of plant gene function in a heterologous host and of plant improvement by using heterologous gene resources.


Molecular Plant-microbe Interactions | 2009

Suppression of the Rice Fatty-Acid Desaturase Gene OsSSI2 Enhances Resistance to Blast and Leaf Blight Diseases in Rice

Chang-Jie Jiang; Masaki Shimono; Satoru Maeda; Haruhiko Inoue; Masaki Mori; Morifumi Hasegawa; Shoji Sugano; Hiroshi Takatsuji

Fatty acids and their derivatives play important signaling roles in plant defense responses. It has been shown that suppressing a gene for stearoyl acyl carrier protein fatty-acid desaturase (SACPD) enhances the resistance of Arabidopsis (SSI2) and soybean to multiple pathogens. In this study, we present functional analyses of a rice homolog of SSI2 (OsSSI2) in disease resistance of rice plants. A transposon insertion mutation (Osssi2-Tos17) and RNAi-mediated knockdown of OsSSI2 (OsSSI2-kd) reduced the oleic acid (18:1) level and increased that of stearic acid (18:0), indicating that OsSSI2 is responsible for fatty-acid desaturase activity. These plants displayed spontaneous lesion formation in leaf blades, retarded growth, slight increase in endogenous free salicylic acid (SA) levels, and SA/benzothiadiazole (BTH)-specific inducible genes, including WRKY45, a key regulator of SA/BTH-induced resistance, in rice. Moreover, the OsSSI2-kd plants showed markedly enhanced resistance to the blast fungus Magnaporthe grisea and leaf-blight bacteria Xanthomonas oryzae pv. oryzae. These results suggest that OsSSI2 is involved in the negative regulation of defense responses in rice, as are its Arabidopsis and soybean counterparts. Microarray analyses identified 406 genes that were differentially expressed (>or=2-fold) in OsSSI2-kd rice plants compared with wild-type rice and, of these, approximately 39% were BTH responsive. Taken together, our results suggest that induction of SA-responsive genes, including WRKY45, is likely responsible for enhanced disease resistance in OsSSI2-kd rice plants.


Plant Journal | 2013

Nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program

Akane Matsushita; Haruhiko Inoue; Shingo Goto; Akira Nakayama; Shoji Sugano; Nagao Hayashi; Hiroshi Takatsuji

The transcriptional activator WRKY45 plays a major role in the salicylic acid/benzothiadiazole-induced defense program in rice. Here, we show that the nuclear ubiquitin–proteasome system (UPS) plays a role in regulating the function of WRKY45. Proteasome inhibitors induced accumulation of polyubiquitinated WRKY45 and transient up-regulation of WRKY45 target genes in rice cells, suggesting that WRKY45 is constantly degraded by the UPS to suppress defense responses in the absence of defense signals. Mutational analysis of the nuclear localization signal indicated that UPS-dependent WRKY45 degradation occurs in the nuclei. Interestingly, the transcriptional activity of WRKY45 after salicylic acid treatment was impaired by proteasome inhibition. The same C-terminal region in WRKY45 was essential for both transcriptional activity and UPS-dependent degradation. These results suggest that UPS regulation also plays a role in the transcriptional activity of WRKY45. It has been reported that AtNPR1, the central regulator of the salicylic acid pathway in Arabidopsis, is regulated by the UPS. We found that OsNPR1/NH1, the rice counterpart of NPR1, was not stabilized by proteasome inhibition under uninfected conditions. We discuss the differences in post-translational regulation of salicylic acid pathway components between rice and Arabidopsis.


Molecular Plant-microbe Interactions | 2013

Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice

Chang-Jie Jiang; Masaki Shimono; Shoji Sugano; Mikiko Kojima; Xinqiong Liu; Haruhiko Inoue; Hitoshi Sakakibara; Hiroshi Takatsuji

Hormone crosstalk is pivotal in plant-pathogen interactions. Here, we report on the accumulation of cytokinins (CK) in rice seedlings after infection of blast fungus Magnaporthe oryzae and its potential significance in rice-M. oryzae interaction. Blast infection to rice seedlings increased levels of N(6)-(Δ(2)-isopentenyl) adenine (iP), iP riboside (iPR), and iPR 5-phosphates (iPRP) in leaf blades. Consistent with this, CK signaling was activated around the infection sites, as shown by histochemical staining for β-glucuronidase activity driven by a CK-responsive OsRR6 promoter. Diverse CK species were also detected in the hyphae (mycelium), conidia, and culture filtrates of blast fungus, indicating that M. oryzae is capable of production as well as hyphal secretion of CK. Co-treatment of leaf blades with CK and salicylic acid (SA), but not with either one alone, markedly induced pathogenesis-related genes OsPR1b and probenazole-induced protein 1 (PBZ1). These effects were diminished by RNAi-knockdown of OsNPR1 or WRKY45, the key regulators of the SA signaling pathway in rice, indicating that the effects of CK depend on these two regulators. Taken together, our data imply a coevolutionary rice-M. oryzae interaction, wherein M. oryzae probably elevates rice CK levels for its own benefits such as nutrient translocation. Rice plants, on the other hand, sense it as an infection signal and activate defense reactions through the synergistic action with SA.

Collaboration


Dive into the Shoji Sugano's collaboration.

Top Co-Authors

Avatar

Hiroshi Takatsuji

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Chang-Jie Jiang

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Haruhiko Inoue

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Masaki Shimono

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Nagao Hayashi

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Masaki Mori

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge