Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shoko Nioka is active.

Publication


Featured researches published by Shoko Nioka.


Analytical Biochemistry | 1991

Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation

Eva M. Sevick; Britton Chance; John S. Leigh; Shoko Nioka; Michael B. Maris

The recent development of near-infrared time- and frequency-resolved tissue spectroscopy techniques to probe tissue oxygenation and tissue oxygenation kinetics has led to the need for further quantitation of spectroscopic signals. In this paper, we briefly review the theory of light transport in strongly scattering media as monitored in the time and frequency domains, and use this theory to develop algorithms for quantitation of hemoglobin saturation from the photon decay rate (delta log R/delta t) obtained using time-resolved spectroscopy, and from the phase-shift (theta) obtained from frequency-resolved, phase-modulated spectroscopy. To test the relationship of these optical parameters, we studied the behavior of delta log R/delta t and theta as a function of oxygenation in model systems which mimicked the optical properties of tissue. Our results show that deoxygenation at varying hemoglobin concentrations can be monitored with the change in the photon decay kinetics, delta delta log R/delta t in the time-resolved measurements, and with the change in phase-shift, delta theta, in the frequency-resolved technique. Optical spectra of the adult human brain obtained with these two techniques show similar characteristics identified from the model systems.


Analytical Biochemistry | 1988

Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle.

Britton Chance; Shoko Nioka; Jane A. Kent; Kevin K. McCully; Michael Fountain; Robert Lloyd Greenfeld; Gary R. Holtom

Difficulties of quantitation of hemoglobin/myoglobin absorption changes in muscle have led to the development of a new approach using short pulses of light. This method uses input light pulses sufficiently short so that the time course of travel of light through the brain can be precisely measured. The time of arrival of light at the detector gives the optical path length, given the velocity of light in tissues. The intensity profile of photon migration in tissues permits determination of the path length that the exiting photons have traveled and the concentration change of the pigments. A cavity-dumped liquid dye laser illuminates the tissue with 130-ps pulses detected as 600-ps duration at a half height at 3.0-cm distance from the input point. The decay of intensity from the 50% point onward to 0.1% follows a logarithmic function of slope mu which is attributed to the total absorption coefficient of the tissue. Increments of mu due to deoxyhemoglobin absorption at 760 and 630 nm are used to calculate the concentration change. This permits the calculation of the path length for continuous light measurements of 2 cm for a particular geometry. Variation of the wavelength of the laser affords determination of a spectrum of changes in the tissue.


Optics Express | 1998

A novel method for fast imaging of brain function, non-invasively, with light.

Britton Chance; Endla K. Anday; Shoko Nioka; Shuoming Zhou; Long Hong; Katherine Worden; Connie Li; T. Murray; Y. Ovetsky; D. Pidikiti; R. Thomas

Imaging of the human body by any non-invasive technique has been an appropriate goal of physics and medicine, and great success has been obtained with both Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) in brain imaging. Non-imaging responses to functional activation using near infrared spectroscopy of brain (fNIR) obtained in 1993 (Chance, et al. [1]) and in 1994 (Tamura, et al. [2]) are now complemented with images of pre-frontal and parietal stimulation in adults and pre-term neonates in this communication (see also [3]). Prior studies used continuous [4], pulsed [3] or modulated [5] light. The amplitude and phase cancellation of optical patterns as demonstrated for single source detector pairs affords remarkable sensitivity of small object detection in model systems [6]. The methods have now been elaborated with multiple source detector combinations (nine sources, four detectors). Using simple back projection algorithms it is now possible to image sensorimotor and cognitive activation of adult and pre- and full-term neonate human brain function in times < 30 sec and with two dimensional resolutions of < 1 cm in two dimensional displays. The method can be used in evaluation of adult and neonatal cerebral dysfunction in a simple, portable and affordable method that does not require immobilization, as contrasted to MRI and PET.


Medical Physics | 2003

In vivo continuous‐wave optical breast imaging enhanced with Indocyanine Green

Xavier Intes; Jorge Ripoll; Yu Chen; Shoko Nioka; Arjun G. Yodh; Britton Chance

We investigate the uptake of a nontargeted contrast agent by breast tumors using a continuous wave diffuse optical tomography apparatus. The instrument operates in the near-infrared spectral window and employs 16 sources and 16 detectors to collect light in parallel on the surface of the tumor-bearing breast (coronal geometry). In our protocol an extrinsic contrast agent, Indocyanine Green (ICG), was injected by bolus. Three clinical scenarios with three different pathologies were investigated. A two-compartment model was used to analyze the pharmacokinetics of ICG and preprocess the data, and diffuse optical tomography was used for imaging. Localization and delineation of the tumor was achieved in good agreement with a priori information. Moreover, different dynamical features were observed for differing pathologies. The malignant cases exhibited slower rate constants (uptake and outflow) compared to healthy tissue. These results provide further evidence that in vivo pharmacokinetics of ICG in breast tumors may be a useful diagnostic tool for differentiation of benign and malignant pathologies.


Journal of Biomedical Optics | 2006

Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study

Ulas Sunar; Harry Quon; Turgut Durduran; Jun Zhang; Juan Du; Chao Zhou; Guoqiang Yu; Regine Choe; Alex Kilger; Robert H. Lustig; Laurie A. Loevner; Shoko Nioka; Britton Chance; Arjun G. Yodh

This pilot study explores the potential of noninvasive diffuse correlation spectroscopy (DCS) and diffuse reflectance spectroscopy (DRS) for monitoring early relative blood flow (rBF), tissue oxygen saturation (StO(2)), and total hemoglobin concentration (THC) responses to chemo-radiation therapy in patients with head and neck tumors. rBF, StO(2), and THC in superficial neck tumor nodes of eight patients are measured before and during the chemo-radiation therapy period. The weekly rBF, StO(2), and THC kinetics exhibit different patterns for different individuals, including significant early blood flow changes during the first two weeks. Averaged blood flow increases (52.7+/-9.7)% in the first week and decreases (42.4+/-7.0)% in the second week. Averaged StO(2) increases from (62.9+/-3.4)% baseline value to (70.4+/-3.2)% at the end of the second week, and averaged THC exhibits a continuous decrease from pretreatment value of (80.7+/-7.0) [microM] to (73.3+/-8.3) [microM] at the end of the second week and to (63.0+/-8.1) [microM] at the end of the fourth week of therapy. These preliminary results suggest daily diffuse-optics-based therapy monitoring is feasible during the first two weeks and may have clinical promise.


Physics in Medicine and Biology | 2008

Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods

Burak Alacam; Birsen Yazici; Xavier Intes; Shoko Nioka; Britton Chance

In this paper, we develop a method of forming pharmacokinetic-rate images of indocyanine green (ICG) and apply our method to in vivo data obtained from three patients with breast tumors. To form pharmacokinetic-rate images, we first obtain a sequence of ICG concentration images using the differential diffuse optical tomography technique. We next employ a two-compartment model composed of plasma, and extracellular-extravascular space (EES), and estimate the pharmacokinetic rates and concentrations in each compartment using the extended Kalman filtering framework. The pharmacokinetic-rate images of the three patient show that the rates from the tumor region and outside the tumor region are statistically different. Additionally, the ICG concentrations in plasma, and the EES compartments are higher around the tumor region agreeing with the hypothesis that around the tumor region ICG may act as a diffusible extravascular flow in compromised capillary of cancer vessels. Our study indicates that the pharmacokinetic-rate images may provide superior information than single set of pharmacokinetic rates estimated from the entire breast tissue for breast cancer diagnosis.


Journal of Biomedical Optics | 2010

Quantitative mitochondrial redox imaging of breast cancer metastatic potential

He N. Xu; Shoko Nioka; Jerry D. Glickson; Britton Chance; Lin Z. Li

Predicting tumor metastatic potential remains a challenge in cancer research and clinical practice. Our goal was to identify novel biomarkers for differentiating human breast tumors with different metastatic potentials by imaging the in vivo mitochondrial redox states of tumor tissues. The more metastatic (aggressive) MDA-MB-231 and less metastatic (indolent) MCF-7 human breast cancer mouse xenografts were imaged with the low-temperature redox scanner to obtain multi-slice fluorescence images of reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins (Fp). The nominal concentrations of NADH and Fp in tissue were measured using reference standards and used to calculate the Fp redox ratio, Fp(NADH+Fp). We observed significant core-rim differences, with the core being more oxidized than the rim in all aggressive tumors but not in the indolent tumors. These results are consistent with our previous observations on human melanoma mouse xenografts, indicating that mitochondrial redox imaging potentially provides sensitive markers for distinguishing aggressive from indolent breast tumor xenografts. Mitochondrial redox imaging can be clinically implemented utilizing cryogenic biopsy specimens and is useful for drug development and for clinical diagnosis of breast cancer.


Review of Scientific Instruments | 2002

Noninvasive, low-noise, fast imaging of blood volume and deoxygenation changes in muscles using light-emitting diode continuous-wave imager

Yuanqing Lin; Gwen Lech; Shoko Nioka; Xavier Intes; Britton Chance

This article focuses on optimizing the signal to noise ratio (SNR) of a three-wavelength light-emitting diode (LED) near-infrared continuous-wave (cw) imager and its application to in vivo muscle metabolism measurement. The shot-noise limited SNR is derived and calculated to be 2×104 for the physiological blood concentrations of muscle. Aiming at shot-noise limited SNR performance and fast imaging, we utilize sample and hold circuits to reduce high-frequency noise. These circuits have also been designed to be parallel integrating, through which SNR of 2×103 and 2 Hz imaging acquisition rate have been achieved when the probe is placed on a muscle model. The noise corresponds to 2×10−4 optical density error, which suggests an in vitro resolution of 15. 4 nM blood volume and 46.8 nM deoxygenation changes. A 48 dB digital gain control circuit with 256 steps is employed to enlarge the dynamic range of the imager. We utilize cuff ischemia as a living model demonstration and its results are reported. The instrum...


Journal of Biomedical Optics | 2000

Study of near infrared technology for intracranial hematoma detection

Quan Zhang; Hong Yan Ma; Shoko Nioka; Britton Chance

Although intracranial hematoma detection only requires the continuous wave technique of near infrared spectroscopy (NIRS), previous studies have shown that there are still some problems in obtaining very accurate, reliable hematoma detection. Several of the most important limitations of NIR technology for hematoma detection such as the dynamic range of detection, hair absorption, optical contact, layered structure of the head, and depth of detection are reported in this article. A pulsed light source of variable intensity was designed and studied in order to overcome hair absorption and to increase the dynamic range and depth of detection. An adaptive elastic optical probe was made to improve the optical contact and decrease contact noise. A new microcontroller operated portable hematoma detector was developed. Due to the layered structure of the human head, simulation on a layered medium was analyzed experimentally. Model inhomogeneity tests and animal hematoma tests showed the effectiveness of the improved hematoma detector for intracranial hematoma detection.


Pediatric Research | 1990

Cerebral energy metabolism and oxygen state during hypoxia in neonate and adult dogs.

Shoko Nioka; Britton Chance; D S Smith; Avraham Mayevsky; M P Reilly; C Alter; T Asakura

ABSTRACT: The relationship between a noninvasive determination of relative oxygen saturation of Hb circulating in brain tissue (StO2) and energy metabolism was investigated with respect to age dogs in three age groups (0 to 6- d-old, 7- to 21-d-old, and adults) and to severity of brain hypoxia using double beam spectroscopy of Hb deoxygenation and nuclear magnetic resonance spectroscopy of energy metabolism. The in vivo oxy-Hb dissociation was determined from the relationship between StO2 curve in the adult dog brain and sagittal sinus oxygen partial pressure during graded hypoxemia and found to be sigmoidal with an oxygen dissociation constant of 26.6 mm Hg. This agreed with an in vitro determination for oxygen dissociation constant of 28.2 mm Hg in adult dog red cells. The arterial oxygen pressure at which brain StO2 was reduced by 50% was shifted toward the right with increasing age (22.2,33.8, and 40.8 mm Hg, respectively). This correlated with an in vitro oxygen dissociation constant of red cell Hb of 17.0, 22.3, and 28.2 mm Hg in the three age groups, respectively. The phosphocreatine-inorganic phosphate ratio (PCr/Pi) was used to relate changes in cellular energy metabolism during hypoxia with changes in StO2. There was no change in PCr/Pi when StO2 had decreased to 50% of the control value. However, when the brain StO2 had decreased to between 7 and 15%, a reduction of PCr/Pi to 50% of the normoxic value occurred. The StO2 at which PCr/Pi falls should be considered a critical level of hypoxemia inasmuch as it represents a threshold of energy failure. There was no significant age dependence in the relationship between StO2 and PCr/Pi. Neonates had much smaller intravascular oxygen gradients than those in adults at a critical level of hypoxemia. However, compared with adults, the 1- to 3-wk-old age group requires a similar O2 availability and extraction for brain metabolic survival.

Collaboration


Dive into the Shoko Nioka's collaboration.

Top Co-Authors

Avatar

Britton Chance

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Joohee Im

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Xavier Intes

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin Z. Li

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

He N. Xu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Arjun G. Yodh

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David S. Smith

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Shuoming Zhou

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jun Zhang

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge